Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanobridges Show Way to Nano Mass Production

Abstract:
Colonnades represent a new way to bring nanotechnology into mass production

Nanobridges Show Way to Nano Mass Production

Champaign, Ill | April 07, 2005

They look like an elegant row of columns, tiny enough for atomic-scale hide-and-seek, but these colonnades represent a new way to bring nanotechnology into mass production.

Nanotechnology, the ability to create and work with structures and materials on an atomic scale, holds the promise of extreme miniaturization for electronics, chemical sensors and medical devices. But while researchers have created tiny silicon wires and connected them together one at a time, these methods cannot easily be scaled up.

"It takes weeks to make one or two, and you end up with different sizes and characteristics," said M. Saif Islam, assistant professor of electrical and computer engineering, who joined UC Davis from Hewlett-Packard Laboratories in 2004.

Like handmade shoes, every manually assembled nanostructure comes out slightly different. Engineers would rather build devices the way cars or computers are built, with every item as consistent as possible.

While working at the Quantum Science Research group of Hewlett-Packard Laboratories, Islam and colleagues came up with a new approach. Silicon wafers used for building microcircuits are usually polished at one specific angle to the atomic planes of silicon. Instead, the group used a wafer that was polished at a different angle, changing the orientation of silicon atomic planes to the surface. Using a chemical vapor deposition technique, they could then grow identical, perpendicular columns of silicon.

The researchers have used this method to grow "nanobridges" across a gap between two vertical silicon electrodes. The nanobridges are strong, chemically stable and show better electrical properties than previous approaches, Islam said. They could be used for nanosized transistors, chemical sensors or lasers.

Taking the approach a step further, Islam and his colleagues at Hewlett-Packard made sandwiches of silicon and insulator and partly etched away the top layer to create awning-shaped structures of silicon supported by insulator. Silicon columns grown under the awnings form miniature colonnades.

The method allows engineers to combine nanowires of precise length with other silicon structures such as integrated circuits, he said.

At UC Davis, Islam plans to continue work on converting the technology into practical devices. The "nanobridge" technique was reported most recently in the March 2005 issue of the journal Applied Physics Part A. The nanocolonnade work was presented April 1 at the spring meeting of the Materials Research Society in San Francisco.

####


Media Contacts:
M. Saif Islam
Electrical and Computer Engineering
(530) 754-6732
sislam@ucdavis.edu

Andy Fell
UC Davis News Service
(530) 752-4533
ahfell@ucdavis.edu

Copyright © UC Davis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Self Assembly

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE