Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Unique Plasma Process for Single-Walled Carbon Nanotubes

Abstract:
A Green Technology in Response to the Kyoto Protocol

World's Unique Plasma Process for Single-Walled Carbon Nanotubes Production

Montreal, Quebec, Canada | March 30, 2005

Raymor Industries Inc. (TSX-V: RAR) is proud to announce the signing of an agreement with the Institut National de la Recherche Scientifique (INRS), whereby Raymor has acquired the exclusive worldwide rights for the commercialization of a new technology for the production of single-walled carbon nanotubes (C-SWNT), based on a plasma process, unique in the world. This process is 25 times more efficient, less dangerous, and less costly than any other existing technologies in the world. Environmentally, this process is non-polluting (green technology) and helps Canada meets its commitments with respect to the Kyoto Protocol. BCC Research estimates that global sales of carbon nanotubes will reach US$231.5 million in 2006, with an average annual growth rate of 173% over the next 5 years.

Raymor plans to increase its current C-SWNT production capacity by using larger power plasma torches already installed at its plant. The minimum revenue forecasted for the next 12 months is CDN$1.0 million, with CDN$5.0 million in 24 months, and CDN$10 million in 36 months. As well, revenues may dramatically increase with increased available capacity from the production units actually in place. The capacity installed in the plant will allow for a production rate in the order of 10,000 grams/day in the next 12 months. Also, Raymor will use a large portion of its production to develop future applications with targeted strategic partners.

Presently, the market price of C-SWNT fluctuates around US$500/gram. This elevated price is primarily due to the very high production costs of the processes used by the competition for the production of similar quality C-SWNT. Given the very high efficiency of the Raymor process, the company anticipates offering its C-SWNT at more reasonable prices, while grabbing a large portion of the global market. The lower price and higher availability will facilitate the rapid integration of C-SWNT in a large number of future applications.

Raymor’s unique process uses a plasma torch to produce large quantities of high quality C-SWNT based on methane gas as the raw material. These nanotubes (C-SWNT) are 100 times stronger than steel at 1/6th the weight, are able to withstand high temperatures, and are extremely conductive. CSWNT can be used for countless technology innovations, such as chemical sensors, structural reinforcement, electrical sensors, fuel cells, portable X-ray machines, extremely lightweight and strong fabrics, artificial muscles and lightweight components of cars and spacecraft, as well as a multitude of other applications.

This revolutionary process is highly sustainable because it uses methane, a greenhouse gas abundantly available worldwide, and it produces C-SWNT and hydrogen. Hydrogen is a secure emission-free fuel for heat and electricity production or even next-generation vehicles. It is important to note that the destruction of methane enables Raymor to support Canada’s efforts in meeting its commitment to the Kyoto Protocol.

In comparison with the Raymor process, the three other known processes used by competitors for single-walled nanotube production (C-SWNT) have a low production efficiency, a high operating cost, and/or use a dangerous combination of high pressure, high temperature and toxic carbon monoxide (CO).

“There is no question that single-walled carbon nanotubes will have enormous impact on our lives. This new process makes it easier and safer to produce the high quality nanotubes needed for breakthrough technologies,” said Stéphane Robert, President of Raymor Industries Inc. “Manufacturers around the world are looking for sustainable and efficient ways to incorporate nanotechnology into their products. We’ve brought them one step closer with this Raymor process,” adds Mr. Robert.

Scientific breakthrough has been developed at the INRS-EMT (Montreal)

The development of Raymor’s process started in 1999. A proof of concept of the process was conducted in 2000. From that point, it took five years to optimize the process, and ready it for largescale production.

“We’ve waited a long time to see our innovation enter real-world production and, thanks to Raymor, we are happy that manufacturers around the world will benefit from the extraordinary properties of singlewalled carbon nanotubes, produced using an efficient and environmentally-friendly process,” said Dr. Barry Stansfield from INRS.

####


About Raymor Industries Inc.
Raymor Industries (TSX-V:RAR) has for mission to be the largest Canadian developer of high technology and a producer/recycler of advanced materials and nanomaterials for high value-added applications. In November 2004, Raymor Industries created a wholly-owned, industrial subsidiary, AP&C Advanced Powders and Coatings, specializing in nanotechnology and advanced materials, and comprising four operational divisions: (1) nanotechnology products, including nano-powders, nano-coatings, and single-walled carbon nanotubes (C-SWNT) for “the applications of tomorrow”; (2) metal and ceramic coatings, which largely targets aerospace, military, and mining applications; (3) spherical metallic powders, primarily used for biomedical and aerospace applications; and (4) net-shape forming, a component manufacturing technique used for ballistic protection and other aerospace and military applications. Raymor holds the exclusive rights to more than 21 patents throughout the world, with other patents pending.

Visit www.raymor.com for more information.



Contact:
Raymond Fournel
Investor Relations
Tel: 514-932-3485
Fax: 514-932-3644
investor@raymor.com

Copyright © Raymor Industries

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Institut National de la Recherche Scientifique

Related News Press

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Nanotubes/Buckyballs/Fullerenes

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Patents/IP/Tech Transfer/Licensing

Researchers develop new way to manufacture nanofibers May 21st, 2015

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Environment

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Directa Plus in Barcelona to present the innovative project GEnIuS for oil spills clean-up activities: The company has created a graphene-based product for the remediation of water contaminated by oil and hydrocarbons May 21st, 2015

Nano-policing pollution May 13th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project