Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Unique Plasma Process for Single-Walled Carbon Nanotubes

Abstract:
A Green Technology in Response to the Kyoto Protocol

World's Unique Plasma Process for Single-Walled Carbon Nanotubes Production

Montreal, Quebec, Canada | March 30, 2005

Raymor Industries Inc. (TSX-V: RAR) is proud to announce the signing of an agreement with the Institut National de la Recherche Scientifique (INRS), whereby Raymor has acquired the exclusive worldwide rights for the commercialization of a new technology for the production of single-walled carbon nanotubes (C-SWNT), based on a plasma process, unique in the world. This process is 25 times more efficient, less dangerous, and less costly than any other existing technologies in the world. Environmentally, this process is non-polluting (green technology) and helps Canada meets its commitments with respect to the Kyoto Protocol. BCC Research estimates that global sales of carbon nanotubes will reach US$231.5 million in 2006, with an average annual growth rate of 173% over the next 5 years.

Raymor plans to increase its current C-SWNT production capacity by using larger power plasma torches already installed at its plant. The minimum revenue forecasted for the next 12 months is CDN$1.0 million, with CDN$5.0 million in 24 months, and CDN$10 million in 36 months. As well, revenues may dramatically increase with increased available capacity from the production units actually in place. The capacity installed in the plant will allow for a production rate in the order of 10,000 grams/day in the next 12 months. Also, Raymor will use a large portion of its production to develop future applications with targeted strategic partners.

Presently, the market price of C-SWNT fluctuates around US$500/gram. This elevated price is primarily due to the very high production costs of the processes used by the competition for the production of similar quality C-SWNT. Given the very high efficiency of the Raymor process, the company anticipates offering its C-SWNT at more reasonable prices, while grabbing a large portion of the global market. The lower price and higher availability will facilitate the rapid integration of C-SWNT in a large number of future applications.

Raymor’s unique process uses a plasma torch to produce large quantities of high quality C-SWNT based on methane gas as the raw material. These nanotubes (C-SWNT) are 100 times stronger than steel at 1/6th the weight, are able to withstand high temperatures, and are extremely conductive. CSWNT can be used for countless technology innovations, such as chemical sensors, structural reinforcement, electrical sensors, fuel cells, portable X-ray machines, extremely lightweight and strong fabrics, artificial muscles and lightweight components of cars and spacecraft, as well as a multitude of other applications.

This revolutionary process is highly sustainable because it uses methane, a greenhouse gas abundantly available worldwide, and it produces C-SWNT and hydrogen. Hydrogen is a secure emission-free fuel for heat and electricity production or even next-generation vehicles. It is important to note that the destruction of methane enables Raymor to support Canada’s efforts in meeting its commitment to the Kyoto Protocol.

In comparison with the Raymor process, the three other known processes used by competitors for single-walled nanotube production (C-SWNT) have a low production efficiency, a high operating cost, and/or use a dangerous combination of high pressure, high temperature and toxic carbon monoxide (CO).

“There is no question that single-walled carbon nanotubes will have enormous impact on our lives. This new process makes it easier and safer to produce the high quality nanotubes needed for breakthrough technologies,” said Stéphane Robert, President of Raymor Industries Inc. “Manufacturers around the world are looking for sustainable and efficient ways to incorporate nanotechnology into their products. We’ve brought them one step closer with this Raymor process,” adds Mr. Robert.

Scientific breakthrough has been developed at the INRS-EMT (Montreal)

The development of Raymor’s process started in 1999. A proof of concept of the process was conducted in 2000. From that point, it took five years to optimize the process, and ready it for largescale production.

“We’ve waited a long time to see our innovation enter real-world production and, thanks to Raymor, we are happy that manufacturers around the world will benefit from the extraordinary properties of singlewalled carbon nanotubes, produced using an efficient and environmentally-friendly process,” said Dr. Barry Stansfield from INRS.

####


About Raymor Industries Inc.
Raymor Industries (TSX-V:RAR) has for mission to be the largest Canadian developer of high technology and a producer/recycler of advanced materials and nanomaterials for high value-added applications. In November 2004, Raymor Industries created a wholly-owned, industrial subsidiary, AP&C Advanced Powders and Coatings, specializing in nanotechnology and advanced materials, and comprising four operational divisions: (1) nanotechnology products, including nano-powders, nano-coatings, and single-walled carbon nanotubes (C-SWNT) for “the applications of tomorrow”; (2) metal and ceramic coatings, which largely targets aerospace, military, and mining applications; (3) spherical metallic powders, primarily used for biomedical and aerospace applications; and (4) net-shape forming, a component manufacturing technique used for ballistic protection and other aerospace and military applications. Raymor holds the exclusive rights to more than 21 patents throughout the world, with other patents pending.

Visit www.raymor.com for more information.



Contact:
Raymond Fournel
Investor Relations
Tel: 514-932-3485
Fax: 514-932-3644
investor@raymor.com

Copyright © Raymor Industries

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Institut National de la Recherche Scientifique

Related News Press

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project