Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Caltech Invents Device For Weighing Individual Molecules

Abstract:
Technology may lead to new forms of molecular identification that are cheaper and faster than existing methods, as well as revolutionary new instruments for proteomics

Caltech Physics Team Invents Device For Weighing Individual Molecules

Pasadena, CA | March 29, 2005

Physicists at the California Institute of Technology have created the first nanodevices capable of weighing individual biological molecules. This technology may lead to new forms of molecular identification that are cheaper and faster than existing methods, as well as revolutionary new instruments for proteomics.

According to Michael Roukes, professor of physics, applied physics, and bioengineering at Caltech and the founding director of Caltech's Kavli Nanoscience Institute, the technology his group has announced this week shows the immense potential of nanotechnology for creating transformational new instrumentation for the medical and life sciences. The new devices are at the nanoscale, he explains, since their principal component is significantly less than a millionth of a meter in width.

The Caltech devices are "nanoelectromechanical resonators"--essentially tiny tuning forks about a micron in length and a hundred or so nanometers wide that have a very specific frequency at which they vibrate when excited. Just as a bronze bell rings at a certain frequency based on its size, shape, and composition, these tiny tuning forks ring at their own fundamental frequency of mechanical vibration, although at such a high pitch that the "notes" are nearly as high in frequency as microwaves.

The researchers set up electronic circuitry to continually excite and monitor the frequency of the vibrating bar. Intermittently, a shutter is opened to expose the nanodevice to an atomic or molecular beam, in this case a very fine "spray" of xenon atoms or nitrogen molecules. Because the nanodevice is cooled, the molecules condense on the bar and add their mass to it, thereby lowering its frequency. In other words, the mechanical vibrations of the now slightly-more-massive nanodevice become slightly lower in frequency--just as thicker, heavier strings on an instrument sound notes that are lower than lighter ones.

Because frequency can be measured so precisely in physics labs, the researchers are then able to evaluate extremely subtle changes in mass of the nanodevice, and therefore, the weight of the added atoms or molecules.

Roukes says that their current generation of devices is sensitive to added mass at the level of a few zeptograms, which is few billionths of a trillionth of a gram. In their experiments this represents about thirty xenon atoms-- and it is the typical mass of an individual protein molecule.

"We hope to transform this chip-based technology into systems that are useful for picking out and identifying specific molecules, one-by-one--for example certain types of proteins secreted in the very early stages of cancer," Roukes says.

"The fundamental problem with identifying these proteins is that one must sort through millions of molecules to make the measurement. You need to be able to pick out the 'needle' from the 'haystack,' and that's hard to do, among other reasons because 95 percent of the proteins in the blood have nothing to do with cancer."

The new method might ultimately permit the creation of microchips, each possessing arrays of miniature mass spectrometers, which are devices for identifying molecules based on their weight. Today, high-throughput proteomics searches are often done at facilities possessing arrays of conventional mass spectrometers that fill an entire laboratory and can cost upwards of a million dollars each, Roukes adds. By contrast, future nanodevice-based systems should cost a small fraction of today's technology, and an entire massively-parallel nanodevice system will probably ultimately fit on a desktop.

Roukes says his group has technology in hand to push mass-sensing technology to even more sensitive levels, probably to the point that individual hydrogen atoms can be weighed. Such an intricately accurate method of determining atomic-scale masses would be quite useful in areas such as quantum optics, in which individual atoms are manipulated.

The next step for Roukes' team at Caltech is to engineer the interfaces so that individual biological molecules can be weighed. For this, the team will likely collaborate with various proteomics labs for side-by-side comparisons of already known information on the mass of biological molecules with results obtained with the new method.

Roukes announced the technology in Los Angeles on Wednesday, March 24, at a news conference during the annual American Physical Society convention. Further results will be published in the near future.

The Caltech team behind the zepto result included Dr. Ya-Tang Yang, former graduate student in applied physics, now at Applied Materials; Dr. Carlo Callegari, former postdoctoral associate, now a professor at the University of Graz, Austria; Xiaoli Feng, current graduate student in electrical engineering; and Dr. Kamil Ekinci former postdoctoral associate, now a professor at Boston University.

####


More information:
Kavli Nanoscience Institute
Applied Materials
University of Graz
Boston University



Contact:
Robert Tindol
(626) 395-3631
tindol@caltech.edu


Copyright California Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Tools

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project