Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotechnology could promote hydrogen economy

Abstract:
Rutgers scientists are using nanotechnology in chemical reactions that could provide hydrogen for tomorrow’s fuel-cell powered clean energy vehicles.

Monday, March 28, 2005

Nanotechnology could promote hydrogen economy

New Brunswick/Piscataway, NJ | March 28, 2005

Say “nanotechnology” and people are likely to think of micro machines or zippy computer chips. But in a new twist, Rutgers scientists are using nanotechnology in chemical reactions that could provide hydrogen for tomorrow’s fuel-cell powered clean energy vehicles.

In a paper to be published April 20 in the Journal of the American Chemical Society, researchers at Rutgers, The State University of New Jersey, describe how they make a finely textured surface of the metal iridium that can be used to extract hydrogen from ammonia, then captured and fed to a fuel cell. The metal’s unique surface consists of millions of pyramids with facets as tiny as five nanometers (five billionths of a meter) across, onto which ammonia molecules can nestle like matching puzzle pieces. This sets up the molecules to undergo complete and efficient decomposition.

“The nanostructured surfaces we’re examining are model catalysts,” said Ted Madey, State of New Jersey professor of surface science in the physics department at Rutgers. “They also have the potential to catalyze chemical reactions for the chemical and pharmaceutical industries.”

A major obstacle to establishing the “hydrogen economy” is the safe and cost-effective storage and transport of hydrogen fuel. The newly discovered process could contribute to the solution of this problem. Handling hydrogen in its native form, as a light and highly flammable gas, poses daunting engineering challenges and would require building a new fuel distribution infrastructure from scratch.

By using established processes to bind hydrogen with atmospheric nitrogen into ammonia molecules (which are simply one atom of nitrogen and three atoms of hydrogen), the resulting liquid could be handled much like today’s gasoline and diesel fuel. Then using nanostructured catalysts based on the one being developed at Rutgers, pure hydrogen could be extracted under the vehicle’s hood on demand, as needed by the fuel cell, and the remaining nitrogen harmlessly released back into the atmosphere. The carbon-free nature of ammonia would also make the fuel cell catalyst less susceptible to deactivation.

When developing industrial catalysts, scientists and engineers have traditionally focused on how fast they could drive a chemical reaction. In such situations, however, catalysts often drive more than one reaction, yielding unwanted byproducts that have to be separated out. Also, traditional catalysts sometimes lose strength in the reaction process. Madey says that these problems could be minimized by tailoring nanostructured metal surfaces on supported industrial catalysts, making new forms of catalysts that are more robust and selective.

In the journal article, Madey and postdoctoral research fellow Wenhua Chen and physics graduate student Ivan Ermanoski describe how a flat surface of iridium heated in the presence of oxygen changes its shape to make uniform arrays of nanosized pyramids. The structures arise when atomic forces from the adjacent oxygen atoms pull metal atoms into a more tightly ordered crystalline state at temperatures above 300 degrees Celsius (or approximately 600 degrees Fahrenheit). Different annealing temperatures create different sized facets, which affect how well the iridium catalyzes ammonia decomposition. The researchers are performing additional studies to characterize the process more completely.

The Rutgers researchers are conducting their work in the university’s Laboratory for Surface Modification, which provides a focus for research into atomic-level phenomena that occur on the surface of solids. It involves the overlapping disciplines of physics, chemistry, materials science and engineering. Their work is supported in part by grants from the U. S. Department of Energy’s Office of Basic Energy Sciences.

####


EDITOR’S NOTE: The Journal article cited in this release is available online at: link



Contact:
Carl Blesch
732/932-7084, ext. 616
cblesch@ur.rutgers.edu

Copyright © Rutgers, The State University of New Jersey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Laboratory for Surface Modification

Related News Press

Possible Futures

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Environment

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Energy

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project