Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists develop new color-coded test for protein folding

Abstract:
New technique works on the same principle as ordinary pH tests that measure the acidity of water

Scientists develop new color-coded test for protein folding

March 25, 2005

Every protein—from albumin to testosterone—is folded into a unique, three-dimensional shape that allows it to function properly. Now Stanford University scientists have developed a simple test that instantly changes color when a protein molecule attached to a gold nanoparticle folds or unfolds. The new technique, which works on the same principle as ordinary pH tests that measure the acidity of water, is described in the March 2005 issue of the journal Chemistry and Biology.

"What we've developed is a simple and inexpensive sensor for determining when a protein changes its conformation," said study co-author Richard N. Zare, the Marguerite Blake Wilbur Professor in Natural Science in Stanford's Department of Chemistry. According to Zare, the new sensor may eventually provide biomedical researchers a fast, affordable method for detecting antibodies and other disease-related proteins.

Acid and base

In their experiment, Zare, postdoctoral fellow Soonwoo Chah and graduate student Matthew R. Hammond created a liquid solution containing nano-sized particles of gold saturated with a protein called cytochrome c.

"We chose gold nanoparticles because they are simple to prepare, easy to control and cost effective," the authors wrote. "To the best of our knowledge, however, gold nanoparticles have not been previously used to investigate the folding and unfolding of proteins."

The initial batch of gold-cytochrome solution had a rosy red hue and a pH value of 10—about the same as an over-the-counter heartburn medication. But when drops of hydrochloric acid were added, the solution began to change color, turning purple when the pH reached 5.8 and light blue at pH 4, which is close to the acidity of wine.

Lab analysis revealed that additional hydrochloric acid was causing the cytochrome c molecules to unfold. As a result, gold nanoparticles coated with cytochrome c began clumping together—a process that caused the solution to quickly change from red to blue as the acidity increased.

The researchers were surprised to discover that, when the pH was raised from 4 to 10, the blue solution turned reddish once again—a strong indication that some cytochrome c molecules had refolded into their original three-dimensional shape. In fact, the experiment showed that, when attached to gold film, cytochrome c can fold, unfold and refold countless times depending on the acidity of the solution, thus making it an ideal tool for detecting conformational changes in proteins.

"While we're not ready to mass-produce this technology, we believe it will eventually be useful for testing other, more complicated proteins," Zare said, noting that a gold nanoparticle sensor could turn out to be a quick and inexpensive way for doctors to identify antibodies and other signs of infection in the blood stream. Over the next few months, he and his colleagues plan to re-do the experiment using other protein molecules.

The Chemistry and Biology study was supported by a grant from the National Science Foundation

####


Editor Note: The study, "Gold Nanoparticles as a Colorimetric Sensor for Protein Conformational Changes," appears in the March 2005 issue of Chemistry and Biology. Reporters can obtain a copy at the EurekAlert website, link, or by e-mailing Cell Press at hhardman@cell.com.

For more information, visit www.stanford.edu/group/Zarelab

Writer: Mark Shwartz



Contact:
Mark Shwartz
News Service
(650) 723-9296
mshwartz@stanford.edu

Comment:
Richard Zare
Department of Chemistry
(650) 723-3062
zare@stanford.edu

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Nanomedicine

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Silver Replaced with Copper Nanoparticles to Produce Antibacterial Fabrics August 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE