Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Researchers Pursue Blast-Resistant Steel

Researchers now have a state-of-the-art instrument that enables them to get a precise look at steel’s composition on the nanoscale

Researchers Pursue Blast-Resistant Steel Using New Tomograph

Evanston, Ill. | March 23, 2005

Materials scientists and engineers at Northwestern University are developing a new “high-security” steel that would be resistant to bomb blasts such as the one that struck — and nearly sank — the USS Cole in Yemen in 2000. The researchers now have a state-of-the-art instrument that enables them to get a precise look at steel’s composition on the nanoscale: a $2 million atom-probe tomograph that is only the fourth of its kind in the world.

Using the new Local-Electrode Atom-Probe (LEAP®) tomograph, researchers studying steel and other materials can — at amazing speed — pluck atoms off a material’s surface one at a time, layer by layer over tens of thousands of layers, to better understand the entire nanostructure and chemical composition of the material, which is key to designing new materials effectively and efficiently.

The technology is similar to that used in CT (computed tomography) scans, which image body tissues for medical diagnosis. Consisting of a field-ion microscope plus a special time-of-flight mass spectrometer, an atom-probe tomograph takes multiple pictures and uses those slices to construct a detailed three-dimensional image of the material.

“We now can conduct certain experiments that would be impossible without the LEAP tomograph,” said David N. Seidman, Walter P. Murphy Professor of Materials Science and Engineering, who spearheaded the effort to bring a LEAP tomograph to Northwestern, the first university in the country to secure one. The three other institutions that have a LEAP tomograph are Oak Ridge National Laboratory, the University of Sydney and Sandia National Laboratories.

With a grant from the U.S. Office of Naval Research, Seidman is working with Morris E. Fine, professor emeritus of materials science and engineering, on the stronger steel problem. “The U.S. Navy wants a superior material for its new fleet of ships,” said Seidman. “Our steel, an alloy of iron, carbon and various other elements and metals, gets its strength mainly from tiny nanosized particles of copper, which are distributed in both homogenous and heterogeneous patterns. The LEAP tomograph lets us, for the first time, view both distributions at once, which is critical to understanding the role copper plays. With in-depth knowledge of steel’s structure and chemical identity, we can design a stronger material.”

The LEAP tomograph has a very large field of view, analyzes significantly larger volumes of material, and collects data more than 720 times faster than its predecessor at Northwestern, a conventional 3D Atom-Probe tomograph. The LEAP tomograph collects 72 million atoms per hour while the old tomograph collects merely 100,000 atoms in the same amount of time. The specimen is held in the tomograph at cryogenic temperatures, immobilizing the nanostructure so that when atoms are removed the remaining structure is not affected. Each atom’s position and chemical identity are recorded, and the data are then used to create a three-dimensional image of the material’s complex atomic structure.

Researchers using the new tomograph are not focusing on steel only. The LEAP tomograph, which became operational in January and is housed in the Northwestern University Center for Atom-Probe Tomography (NUCAPT) in William A. and Gayle Cook Hall, has attracted faculty, post-doctoral fellows and graduate students working on problems ranging from semiconductor nanowires for use in new nanotechnologies to stronger and energy efficient aluminum alloys for use at high temperatures, with applications in the airline and automotive industries. Other materials that can be studied using the LEAP tomograph are metal alloys containing ceramic particles, semiconductors and conducting polymers.

“The LEAP tomograph is a beautifully engineered and revolutionary piece of instrumentation,” said Seidman, who heads NUCAPT, the second largest atom-probe tomography group in the world. “It’s like going from a rotating anode X-ray tube in your lab to the synchrotron at Argonne National Laboratory. Now the rate limiting step is analyzing the data as opposed to collecting the data.”

To assist Seidman and other researchers in this challenge, a post-doctoral fellow from Argonne will be involved in developing additional software to handle the large data sets. One focus will be image visualization and the display of data in a way that reveals the most useful information.

The U.S. Office of Naval Research and the National Science Foundation provided the majority of the funding for the LEAP tomograph.


Media Contact:
Megan Fellman

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


Nanometrics Announces Upcoming Investor Events November 18th, 2015

Harris & Harris Group Portfolio Company, D-Wave Systems, Announces Multi-Year Agreement With Lockheed Martin November 16th, 2015

Arrowhead Late-Breaking Clinical Data Shows that ARC-520 Can Produce Deep and Durable Reductions of Hepatitis B Viral Antigens and DNA November 16th, 2015

Harris & Harris Group Portfolio Company, D-Wave Systems, Announces the Sale of Its Latest Quantum Computer to Los Alamos National Laboratory November 11th, 2015


Nanomagnets: Creating order out of chaos: Dresden physicists engrave nanoscale magnets directly into layer of material November 23rd, 2015

Nanocarriers may carry new hope for brain cancer therapy: Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier November 22nd, 2015

The route to high temperature superconductivity goes through the flat land: The route to high temperature superconductivity goes through the flat land November 21st, 2015

Calling All Industries: Get Your Graphene By The Kiloton November 21st, 2015


Physicists explain the unusual behavior of strongly disordered superconductors: Using a theory they developed previously, the scientists have linked superconducting carrier density with the quantum properties of a substance November 25th, 2015

Scientists 'see' detailed make-up of deadly toxin for the first time: Exciting advance provides hope for developing novel potential method of treating pneumococcal diseases such as bacterial pneumonia, meningitis and septicaemia November 25th, 2015

Researchers find new, inexpensive way to clean water from oil sands production November 24th, 2015

Production of Nanocapsules Containing Omega-3 Powder in Iran November 24th, 2015


Using light-force to study single molecules November 23rd, 2015

Breakthrough allows tracking of single molecules in 3-D with nanoscale accuracy:New method builds on Nobel Prize-winning technique, with exciting implications for understanding the inner workings of cells and neurons November 23rd, 2015

UCLA nanoscientists develop safer, faster way to remove pollutants from water November 23rd, 2015

New EU project designed to link diagnosis and treatment of diseases over the long term: Joint research project aims at the improvement of companion diagnostics and therapy of tumor diseases November 23rd, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic