Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-probes Allow an Inside Look at Cell Nuclei

Abstract:
Biologists may soon use it to watch the inner workings of a living cell like never before

Nano-probes Allow an Inside Look at Cell Nuclei

Berkeley, CA | March 18, 2005

Nanotechnology may be in its infancy, but biologists may soon use it to watch the inner workings of a living cell like never before. Scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a way to sneak nano-sized probes inside cell nuclei where they can track life’s fundamental processes, such as DNA repair, for hours on end.

“Our work represents the first time a biologist can image long-term phenomena within the nuclei of living cells,” says Fanqing Chen of Berkeley Lab’s Life Sciences Division, who developed the technique with Daniele Gerion of Lawrence Livermore National Laboratory.


Berkeley Lab - Fanqing Chen
Fanqing Chen (pictured) and Daniele Gerion have harnessed the powers of nanotechnology to image the interior of cell nuclei.
Credit Berkeley Lab

Their success lies in specially prepared crystalline semiconductors composed of a few hundred or thousand atoms that emit different colors of light when illuminated by a laser. Because these fluorescent probes are stable and nontoxic, they have the ability to remain in a cell’s nucleus — without harming the cell or fading out — much longer than conventional fluorescent labels. This could give biologists a ringside seat to nuclear processes that span several hours or days, such as DNA replication, genomic alterations, and cell cycle control. The long-lived probes may also allow researchers to track the effectiveness of disease-fighting drugs that target these processes.

“We could determine whether a drug has arrived where it is supposed to, and if it is having the desired impact,” says Chen.

The first enduring look into the secret lives of cell nuclei comes by way of a strong collaboration between biologists and chemists. For the past four years, Chen and Gerion have worked closely with members of the lab of Paul Alivisatos, a Berkeley Lab chemist in the Materials Sciences Division and Associate Laboratory Director who helped pioneer the development of nano-sized crystals of semiconductor materials. Called quantum dots, these microscopic crystals have shown promise in such wide-ranging applications as solar cells, computer design, and biology. In 1998, for example, Alivisatos developed a way to fashion inorganic nanocrystals composed of cadmium selenide and cadmium sulfide into fluorescent probes suitable for the study of living cells. This technology has been licensed to the Hayward, California-based Quantum Dot Corporation for use in biological assays.

More recently, Chen and Gerion wondered if they could get even closer to the genetic action by transporting quantum dots inside cell nuclei.

“We took the tool Paul developed and applied it to a problem faced by biologists every day — getting inside the nucleus, a desirable target because the cell’s genetic information resides there,” says Chen.


Berkeley Lab - nano-sized probes
These two images portray the movement of the nano-sized probes. On the left, a false-color overlay of fluorescence from a cell taken at four minute intervals reveals the dots moving from the green to the red positions. On the right, a large aggregate of immobile dots is indicated with the red arrow, while the circled stars and arrows indicate dots that move.
Credit Berkeley Lab

First, they had to breach the nuclear membrane, which has pores that are only about 20 nanometers wide. To fit through these tiny slits, Chen and Gerion used an especially compact cadmium selenide/zinc sulfide quantum dot coated with silica. Next, they stole a trick from a virus’s playbook to smuggle this nanocrystal past the highly selective membrane that guards the entrance into the nucleus. In nature, a virus called SV40 is coated with a protein that binds to a cell’s nuclear trafficking mechanism, a ploy that gives the virus an unhindered ride inside the nucleus. Chen and Gerion obtained a portion of this protein and attached it to the quantum dot. The result is a hybrid quantum dot, part biological molecule and part nano-sized semiconductor, that is small enough to slide through the nuclear membrane’s pores and believable enough to slip past the membrane’s barriers.

“We knew we could get quantum dots inside a cell, but getting them through the nuclear membrane is very difficult,” says Chen. “So we learned from the virus.”

So far, Chen and Gerion have been able to introduce and retain quantum dots in the nuclei of living cells for up to a week without harming the cell. In addition, quantum dots fluoresce for days at a resolution high enough to detect biological events carried out by single molecules. In contrast, conventional labels such as organic fluorescent dyes and green fluorescent proteins only fluoresce for a few minutes at a high resolution. These labels are also either toxic to cells or difficult to construct and manipulate.

In the future, they hope to tailor quantum dots to track specific chemical reactions inside nuclei, such as how proteins help repair DNA after irradiation. They have already visualized the dots’ journey from the area surrounding the nucleus to inside the nucleus, a feat that opens the door for real-time observations of nuclear trafficking mechanisms. They also hope to target other cellular organelles besides the nucleus, such as mitochondria and Golgi bodies. And because quantum dots emit different colors of light based on their size, they can be used to observe the transfer of material between cells.

“We can have two different quantum dots in two different cells, and watch as the cells exchange their mitochondria,” says Chen, adding that their technique paves the way for imaging a host of other long-term biological events. “The toughest part is getting inside the nucleus, and we have already cleared that hurdle.”

Chen and Gerion’s research was published in the 2004, Vol. 2, No. 10 issue of Nano Letters.

###


About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our Website at www.lbl.gov.



Contact:
Dan Krotz
(510) 486-4019
dakrotz@lbl.gov

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Tools

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project