Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > In solution, tiny magnetic wires scatter light

Abstract:
Ccientists command the direction in which light bounces off tiny, magnetic wires

In solution, tiny magnetic wires scatter light

March 14, 2005

Maneuvering external magnets, scientists can command the direction in which light bounces off tiny, magnetic wires that sway like matchsticks in thick, slow-moving solutions.

Announcing her finding here on March 13 at the 229th meeting of the American Chemical Society, University of Wisconsin-Madison materials chemist Anne Bentley described how suspended nickel wires - each 200 times thinner than a human hair - could one day serve as magneto-optical switches. The switches could aid in fields such as photonics, where light, rather than electricity, relays information.

"In a broader sense, it is also helpful to study how these wires behave in wet situations because if they are ever medically used, there is little inside our bodies that's dry," says Bentley, who suspended her wires in several types of fluids and found that the light-directing phenomenon was most consistent when she used "molasses-like" liquids such as glycerol.

"Another advantage that ‘magnetic fluids' may have over other light-directing devices, such as mirrors, is that fluids can easily take various shapes," Bentley adds.

Bentley calls her microscopic wires "nanowires" after nanotechnology, the booming, cutting-edge science of small. The "nano" in nanotechnology derives from the nanometer, which is equivalent to a billionth of one meter. Several types of nanoparticles are already in use, in products such as sunscreens and inkjet printer ink.

But in the fledgling realm of nanowire research, Bentley is one of only a few scientists worldwide who is studying the properties of nickel nanowires. Other nano-scale structures under investigation include, for instance, non-magnetic carbon nanotubes.

Nanowires have not yet ventured outside the research arena, but researchers believe they will one day become critical components in ever-shrinking electronic circuits. Nickel nanowires, for instance, could play a key role in storing information, says Bentley. In particular, scientists could use external magnets to dictate the orientation and position of magnetic nickel nanowires within complex and tiny electronic systems. Without such control, says Bentley, working with nano-scale circuit parts could be like "trying to put Legos together with oven mitts on."

####


Writer: Paroma Basu, (608) 262 9772, basu1@wisc.edu



Contact:
Anne Bentley
(608) 262-6711
akbentley@wisc.edu

Copyright © University of Wisconsin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic