Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny Superconductors Withstand Stronger Magnetic Fields

Abstract:
Finding may be useful for technologies that employ superconducting magnets, such as magnetic resonance imaging.

Tiny Superconductors Withstand Stronger Magnetic Fields

Champaign, Ill | February 4, 2005

Ultrathin superconducting wires can withstand stronger magnetic fields than larger wires made from the same material, researchers now report. This finding may be useful for technologies that employ superconducting magnets, such as magnetic resonance imaging.

As described in the Jan. 14 issue of the journal Physical Review Letters, researchers at the University of Illinois at Urbana-Champaign have created high-quality superconducting wires with molecular dimensions, and measured their behavior in magnetic fields of various strengths. The observational results have confirmed that theories developed for bulk superconductors also apply to molecular-scale superconductors.

"Our experimental results show an excellent agreement with the theory of pair-breaking perturbations, even at high magnetic fields," said Alexey Bezryadin, a professor of physics at Illinois. "The theory takes into account both spin and orbital contributions."


Click to enlarge
Photo by Kwame Ross
The diagram shows the principle of molecular templating, i.e. a method of nanofabrication used to make superconducting nanowires with molecular dimensions. The substrate is a Si wafer with thin films of silicon oxide (SiO2) and silicon nitride (SiN) deposited over it. A 100 nm wide trench is formed in the SiN-SiO2 bilayer. Nanotubes are placed across the trench from a solution. The sample then is sputter-coated with a desired material, i.e. a superconducting amorphous alloy in Bezryadin's case. The inset shows a scanning electron micrograph of a nanowire produced by molecular templating.

To study this phenomenon, the researchers began by placing a single-wall carbon nanotube across a narrow trench (about 100 nanometers wide) etched in the surface of a silicon wafer. The nanotube was then coated with a thin film of superconducting material (molybdenum-germanium), chilled below its critical temperature, and its properties measured in the presence of a magnetic field.

"Usually, when you apply a magnetic field to a superconductor, the field suppresses or even destroys the superconductivity," Bezryadin said. "The magnetic field pulls apart the two electrons forming Cooper pairs and also rotates their spins. As the superconductor becomes smaller, however, the destructive effects of the magnetic field become weaker."

The magnetic field showed a remarkably weak effect on nanowires, the researchers report. Both the orbital and the spin pair-breaking effects were strongly suppressed in the nanowires. The orbital effect was weak because of the small dimensions of the wire (about 10 nanometers in diameter) and the spin effect was weakened by spin-orbit interactions.

"One should not set a goal of reducing the wire's diameter indefinitely, however," Bezryadin said. "As the diameter is decreased, disorder and boundary effects become more and more important. These factors also weaken superconductivity."

In fact, the researchers' results show that thin wires do not really have zero resistance, as bulk samples do. They also show that the thinner the wire the higher its electrical resistance is.

Alexey Bezryadin
Click to enlarge
Photo by Kwame Ross
Alexey Bezryadin, a professor of physics at Illinois, has created high-quality superconducting wires with molecular dimensions, and measured their behavior in magnetic fields of various strengths. The observational results have confirmed that theories developed for bulk superconductors also apply to molecular-scale superconductors.

Because nanoscale superconductors don't repel magnetic fields, they could prove useful in a variety of superconducting applications. By incorporating nanowires as filaments in bigger superconducting wires, for example, more current could be carried without being destroyed by a magnetic field.

"Again, one needs to optimize the diameters of the wires in order to produce cables with the highest ability to carry strong currents and withstand strong magnetic fields," Bezryadin said. "The nanowire should not be too thick, in order to be less sensitive to magnetic fields; but it also should not be too thin, in order to be fully superconducting. A correct balance should be achieved."

The work was performed by Bezryadin, postdoctoral research associate Andrey Rogachev and graduate research assistant Anthony Bollinger. Funding came from the National Science Foundation, the Alfred P. Sloan Foundation and the U.S. Department of Energy.

To reach Alexey Bezryadin, call 217-333-9580; e-mail: bezryadi@uiuc.edu.



Contacts:
James E. Kloeppel
Physical Sciences Editor
217 244-1073
kloeppel@uiuc.edu

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Discoveries

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Announcements

GLOBALFOUNDRIES Delivers 8SW RF SOI Technology for Next-Generation Mobile and 5G Applications: Advanced 8SW 300mm SOI technology enables cost-effective, high-performance RF front-end modules for 4G LTE mobile and sub-6GHz 5G applications September 20th, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project