Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UTD NanoTech Institute Wins $750,000 Grant

Abstract:
Researchers at the NanoTech Institute at The University of Texas at Dallas (UTD) have been awarded a $750,000, 20-month grant to develop artificial muscles that convert chemical energy to mechanical energy.

UTD NanoTech Institute Wins $750,000 Grant For Research on Artificial Muscles

Work Could Lead to Advanced Limbs for Amputees, Robots

Richardson, TX | January 05, 2005

Researchers at the NanoTech Institute at The University of Texas at Dallas (UTD) have been awarded a $750,000, 20-month grant to develop artificial muscles that convert chemical energy to mechanical energy. The award was made by the United States Defense Advanced Research Projects Agency (DARPA), whose charter is to develop new technologies for military applications.

UTD NanoTech Institute researchers have long pioneered in inventing artificial muscles that are electrically powered, and their discoveries in this area have led to industrial commercialization efforts in the United States, Japan and Sweden. This new program is more ambitious – to make artificial muscles that are chemically powered, like natural muscle, and exceed the force generation, contraction and speed of their natural counterpart.

Electrically powered artificial muscles based on conducting polymer and carbon nanotubes were first described by the principal investigator of this new program, Dr. Ray H. Baughman, Robert A. Welch Professor of Chemistry and director of the UTD NanoTech Institute. Carbon nanotubes are nanosize cylinders of graphite sheets and conducting polymers are plastics made “metallic” by doping. Dr. Alan MacDiarmid, James Von Ehr Distinguished Chair in Science and Technology at UTD and a winner of the Nobel Prize for the co-discovery of conducting polymers, has made pioneering advances in developing conducting polymer artificial muscles.

While the carbon nanotube muscles can exceed the performance of natural muscle by generating a hundred times the force and elongating twice as fast, the contraction is less than one-tenth that of natural muscle. The conducting polymer muscles provide similar contractions to natural muscles, but have neither high cycle life nor high energy conversion efficiencies. The goal of the DARPA-funded program is to eliminate these problems and convert from electrically powered to chemically powered artificial muscles.

The proposed fuel-powered artificial muscles are at the same time fuel cells, supercapacitors and mechanical actuators, so the same elements convert a high energy density fuel to electrical energy, store this energy and use it to do mechanical work. These artificial muscles will use strong, tough carbon nanotube yarns that were recently described in the prestigious journal Science by UTD researchers and a colleague from an Australian national laboratory.

“An important possible eventual application of this research is artificial limbs that function like natural arms and legs – including the ability to move and manipulate objects -- both for amputees and robots,” Baughman said. “While we are very far from achieving this vision at present, we have already experimentally demonstrated primitive devices that directly convert the chemical energy of fuels to mechanical motion.”

The first “fuel cell artificial muscle” was demonstrated at UTD by Research Scientist Von Howard Ebron, Research Associate Zhiwei Yang and Dr. John Ferraris, interim dean of the university’s School of Natural Sciences and Mathematics.

About UTD

The University of Texas at Dallas, located at the convergence of Richardson, Plano and Dallas in the heart of the complex of major multinational technology corporations known as the Telecom Corridor®, enrolls more than 14,000 students. The school’s freshman class traditionally stands at the forefront of Texas state universities in terms of average SAT scores. The university offers a broad assortment of bachelor’s, master’s and doctoral degree programs. For additional information about UTD, please visit the university’s web site at www.utdallas.edu.


News Contact:
Steve McGregor
UTD
(972) 883-2293
smcgreg@utdallas.edu

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

United States Defense Advanced Research Projects Agency

Related News Press

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Investments/IPO's/Splits

Harris & Harris Group Reports Financial Statements as of December 31, 2014 and Posts Annual Letter to Shareholders on Website March 17th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Arrowhead to Present at 2015 RBC Capital Markets' Global Healthcare Conference February 17th, 2015

Iran 1st among Islamic Nations in Scientific Production, Nanotechnology February 16th, 2015

Nanotubes/Buckyballs

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Effect of Carbon Nanotubes on Properties of Cement Composites Studied in Iran March 23rd, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE