Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UTD NanoTech Institute Wins $750,000 Grant

Abstract:
Researchers at the NanoTech Institute at The University of Texas at Dallas (UTD) have been awarded a $750,000, 20-month grant to develop artificial muscles that convert chemical energy to mechanical energy.

UTD NanoTech Institute Wins $750,000 Grant For Research on Artificial Muscles

Work Could Lead to Advanced Limbs for Amputees, Robots

Richardson, TX | January 05, 2005

Researchers at the NanoTech Institute at The University of Texas at Dallas (UTD) have been awarded a $750,000, 20-month grant to develop artificial muscles that convert chemical energy to mechanical energy. The award was made by the United States Defense Advanced Research Projects Agency (DARPA), whose charter is to develop new technologies for military applications.

UTD NanoTech Institute researchers have long pioneered in inventing artificial muscles that are electrically powered, and their discoveries in this area have led to industrial commercialization efforts in the United States, Japan and Sweden. This new program is more ambitious – to make artificial muscles that are chemically powered, like natural muscle, and exceed the force generation, contraction and speed of their natural counterpart.

Electrically powered artificial muscles based on conducting polymer and carbon nanotubes were first described by the principal investigator of this new program, Dr. Ray H. Baughman, Robert A. Welch Professor of Chemistry and director of the UTD NanoTech Institute. Carbon nanotubes are nanosize cylinders of graphite sheets and conducting polymers are plastics made “metallic” by doping. Dr. Alan MacDiarmid, James Von Ehr Distinguished Chair in Science and Technology at UTD and a winner of the Nobel Prize for the co-discovery of conducting polymers, has made pioneering advances in developing conducting polymer artificial muscles.

While the carbon nanotube muscles can exceed the performance of natural muscle by generating a hundred times the force and elongating twice as fast, the contraction is less than one-tenth that of natural muscle. The conducting polymer muscles provide similar contractions to natural muscles, but have neither high cycle life nor high energy conversion efficiencies. The goal of the DARPA-funded program is to eliminate these problems and convert from electrically powered to chemically powered artificial muscles.

The proposed fuel-powered artificial muscles are at the same time fuel cells, supercapacitors and mechanical actuators, so the same elements convert a high energy density fuel to electrical energy, store this energy and use it to do mechanical work. These artificial muscles will use strong, tough carbon nanotube yarns that were recently described in the prestigious journal Science by UTD researchers and a colleague from an Australian national laboratory.

“An important possible eventual application of this research is artificial limbs that function like natural arms and legs – including the ability to move and manipulate objects -- both for amputees and robots,” Baughman said. “While we are very far from achieving this vision at present, we have already experimentally demonstrated primitive devices that directly convert the chemical energy of fuels to mechanical motion.”

The first “fuel cell artificial muscle” was demonstrated at UTD by Research Scientist Von Howard Ebron, Research Associate Zhiwei Yang and Dr. John Ferraris, interim dean of the university’s School of Natural Sciences and Mathematics.

About UTD

The University of Texas at Dallas, located at the convergence of Richardson, Plano and Dallas in the heart of the complex of major multinational technology corporations known as the Telecom Corridor®, enrolls more than 14,000 students. The school’s freshman class traditionally stands at the forefront of Texas state universities in terms of average SAT scores. The university offers a broad assortment of bachelor’s, master’s and doctoral degree programs. For additional information about UTD, please visit the university’s web site at www.utdallas.edu.


News Contact:
Steve McGregor
UTD
(972) 883-2293
smcgreg@utdallas.edu

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

United States Defense Advanced Research Projects Agency

Related News Press

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Investments/IPO's/Splits

Pixelligent Closes $5.5 Million in Funding: Capital Will Be Used to Support Global Customer Growth December 12th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Arrowhead to Present at Upcoming Conferences November 15th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Announcements

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE