Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Multipurpose Nanocables Invented

Abstract:
Nanocables could become key parts of toxin detectors, miniaturized solar cells and powerful computer chips.

Multipurpose Nanocables Invented

Davis, CA – November 16, 2004

Tiny nanocables, 1,000 times smaller than a human hair, could become key parts of toxin detectors, miniaturized solar cells and powerful computer chips.

The technique for making the nanocables was invented by UC Davis chemical engineers led by Pieter Stroeve, professor of chemical engineering and materials science. They manufacture the cables in the nano-sized pores of a template membrane. The insides of the pores are coated with gold. Layers of other semiconductors, such as tellurium, cadmium sulfide or zinc sulfide, are electrochemically deposited in the gold tube until a solid cable forms, then the membrane is dissolved, leaving finished cables behind.

Stroeve envisions many uses for these nanocables. For example, the cables' ability to conduct electricity changes when they are exposed to different chemicals or toxins. Earlier nano-devices could only detect whether a toxin was present, said Ruxandra Vidu, a postdoctoral scholar working with Stroeve. But nanocables will go further, measuring the quantity of toxins.

Stroeve's team can also construct arrays of nanocables. "You put a copper tape on the tops of the nanocables before the template is dissolved," Stroeve said. "You're left with nanocables sticking up at right angles from the tape."

These arrays have a very large surface area -- 1000 times greater than on a flat device of the same size. They could be used to efficiently capture sunlight in a tiny solar cell.

Nanocables could also be used to make computer chips more powerful by packing transistors closer together. Computers now contain silicon chips with metal transistors affixed to the surface. "With our new technique, we could embed transistors into the silicon chips to begin with," Stroeve said.

The work is published online in the Journal of the American Chemical Society.

Media Contacts:
Pieter Stroeve
Chemical Engineering and Materials Science
(530) 752-8778
pstroeve@ucdavis.edu

Andy Fell
UC Davis News Service
(530) 752-4533
ahfell@ucdavis.edu

Copyright © UC Davis

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Sensors

The next generation of carbon monoxide nanosensors May 26th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic