Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New center to research nanostructures

Abstract:
Nanobatteries, nanopumps, nanomotors and a slew of other nanoscale devices are among the promises of a new $11.9 million Center of Integrated Nanomechanical Systems (COINS).

New center to research nanostructures, design and build nanodevices

Berkeley , CA – November 08, 2004

Nanobatteries, nanopumps, nanomotors and a slew of other nanoscale devices – most with parts that move a mere fraction of the width of an atom – are among the promises of a new $11.9 million Center of Integrated Nanomechanical Systems (COINS) starting up this fall at the University of California, Berkeley.

The center, one of six new Nanoscale Science and Engineering Centers funded for five years by the National Science Foundation (NSF), will harness the skills of theoretical and experimental physicists, chemists, biologists and engineers to explore the basic science of nanostructures and then use this knowledge to both create nanoscale building blocks and assemble them into working devices.

The goal is to merge nanotubes and a host of other Tinkertoy-like nanopieces with organic molecules – DNA, proteins or nanomolecular motors – to create sensors or nanomachines small enough to fit on the back of a virus. Each nanoscale building block ranges from a few to hundreds of nanometers across(a nanometer is a billionth of a meter, about one thousandth the width of a human hair).

“We can’t help getting excited about the richness and diversity of the science involved and the opportunities in coupling this to potential applications and making little devices,” said center director Alex Zettl, professor of physics at UC Berkeley. Zettl is at the forefront of research on nanotubes, which are extremely strong strands of pure carbon or boron nitride that can act as electrical conductors or semiconductors, yet also have interesting thermal and mechanical properties. To date, he has created nanobearings from a pair of telescoped nanotubes, a nanomotor with a nanotube as the shaft, and nanotube-based nanotransistors, chemical sensors and electron field emitters for flat panel displays.

“We’ll be designing new and modifying existing building blocks to make them accessible to assembling technologies to the point where you could order them like you order lumber at a lumberyard,” Zettl said. ”This is quite ambitious. There will be a lot of scientific and engineering challenges here.”

The advantage of nanoscale devices is not only small size but also small power consumption – the tinier the device, the less energy required to run it. Some of the devices, however, will generate energy, either chemically or mechanically or via light. Many of the building blocks and structures based on them will first be examined theoretically, with only the most promising candidates pursued experimentally.

The group consists of 28 researchers from UC Berkeley, UC Merced, Stanford University and the California Institute of Technology, and includes not only engineers, physicists, chemists and biologists, but an economist. While some of the researchers are synthesizing and characterizing various building blocks, others will integrate them and map out system properties, and still others will develop the tools to manipulate and construct new building blocks and systems. Several researchers will pursue the theoretical basics and limits of new devices. And Brad DeLong, a UC Berkeley professor of economics, will explore the social, ethical, legal and societal issues surrounding nanotechnology in light of historical technology revolutions. He also will encourage conversations between nanoscientists and scholars in the social sciences and humanities.

“What COINS will do is bring together faculty and students who can make nanoscale building blocks, predict and measure their unique properties, and assemble these building blocks into devices and systems. This, in turn, will lead to revolutionary new applications in information technology, energy and healthcare,” said UC Berkeley’s Tom Kalil, a special assistant to Chancellor Robert J. Birgeneau. Kalil helped meld the diverse group of researchers into a coherent center that captured the attention of the NSF.

Researchers in the center will be able to make advantage of the new research facilities that are being created by the two California Institutes for Science and Innovation located at UC Berkeley – the Center for Information Technology Research in the Interest of Society (CITRIS) and the California Institute for Quantitative Biomedical Research (QB3).

Some of the researchers and their projects include:

  • Mechanical engineering professor Arun Majumdar has developed arrays of nanoscale cantilevers that flex like diving boards when molecules bind to them. Majumdar, along with Michael Roukes, professor of physics, applied physics and bioengineering at Caltech, and other collaborators will try to turn these into biosensors using lasers to detect the binding of minute quantities of chemicals.
  • Electrical engineering professor Ron Fearing is working with Peidong Yang, associate professor of chemistry, and Thomas Kenny, professor of mechanical engineering at Stanford, to create artificial nanohairs that will adhere to surfaces as do the toe hairs of geckos.
  • Carlos Bustamante, professor of physics, and other researchers are trying to convert the chemical energy in twisted DNA into mechanical energy that can crank a nanotube motor. Bustamante is working with physics professors Michael Crommie and Steve Louie; Kyeongjae Cho, professor of mechanical engineering at Stanford; and theoretical biologist George Oster, UC Berkeley professor of molecular and cell biology.
  • A team led by Majumdar and Ramamoorthy Ramesh, professor of materials science and engineering and of physics, is studying the movement of fluids on the nanoscale in order to develop a battery. This research also could lead to a novel type of transistor based on nanofluidics.
  • Researchers with the Berkeley Sensor and Actuator Sensor, which 18 years ago pioneered microscale devices or MEMS (microelectromechanical systems), are transitioning to the nanoscale with attempts to create devices from nanowires, such as a vibrating resonator. They include Roger Howe and Jeffrey Bokor, professors of electrical engineering and computer science, and Roya Maboudian, associate professor of chemical engineering.
  • Zettl, Bustamante and Maboudian will work with chemistry professors Jean Frechet and Paul Alivisatos, as well as with other collaborators, to camouflage nanomaterials so as to allow the binding of tailored molecules, proteins and other biological molecules. These “functionalized” nanomaterials could mimic large biological molecules in the body.

A major education and outreach component of the center involves not only undergraduate education at UC Berkeley and UC Merced, but also public outreach through the Lawrence Hall of Science. And decision-makers in Sacramento will be briefed on nanotechnology and other important scientific issues through a new program called “Capitol Science,” organized with UC Berkeley’s Institute for Governmental Studies.

A student group, the year-old Berkeley Nanotechnology Club, has even been brought into the center to provide an important point of contact between student entrepreneurs in science, engineering, business and law to encourage technology transfer to the marketplace.

The club “encourages the formation of teams of science and engineering students with Haas School of Business students to develop business plans around some of the new technologies that will emerge from the new center,” Kalil said. He noted that UC Berkeley has already spun off several nanotechnology companies, including Nanomix Inc., Nanosys Inc., Quantum Dot Corp. and Kalinex, Inc.


Contact:

Robert Sanders
rsanders@berkeley.edu
510-643-6998

Copyright © UCB

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nanoscale Science and Engineering Centers

National Science Foundation

Related News Press

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Investments/IPO's/Splits

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

180 Degree Capital Corp. Reports +14.2% Growth in Q1 2021, $10.60 Net Asset Value Per Share as of March 31, 2021, and Developments From Q2 2021 May 11th, 2021

INBRAIN Neuroelectronics raises over €14M to develop smart graphene-based neural implants for personalised therapies in brain disorders March 26th, 2021

180 Degree Capital Corp. Issues Second Open Letter to the Board and Shareholders of Enzo Biochem, Inc. March 26th, 2021

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project