Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New center to research nanostructures

Abstract:
Nanobatteries, nanopumps, nanomotors and a slew of other nanoscale devices are among the promises of a new $11.9 million Center of Integrated Nanomechanical Systems (COINS).

New center to research nanostructures, design and build nanodevices

Berkeley , CA – November 08, 2004

Nanobatteries, nanopumps, nanomotors and a slew of other nanoscale devices – most with parts that move a mere fraction of the width of an atom – are among the promises of a new $11.9 million Center of Integrated Nanomechanical Systems (COINS) starting up this fall at the University of California, Berkeley.

The center, one of six new Nanoscale Science and Engineering Centers funded for five years by the National Science Foundation (NSF), will harness the skills of theoretical and experimental physicists, chemists, biologists and engineers to explore the basic science of nanostructures and then use this knowledge to both create nanoscale building blocks and assemble them into working devices.

The goal is to merge nanotubes and a host of other Tinkertoy-like nanopieces with organic molecules – DNA, proteins or nanomolecular motors – to create sensors or nanomachines small enough to fit on the back of a virus. Each nanoscale building block ranges from a few to hundreds of nanometers across(a nanometer is a billionth of a meter, about one thousandth the width of a human hair).

“We can’t help getting excited about the richness and diversity of the science involved and the opportunities in coupling this to potential applications and making little devices,” said center director Alex Zettl, professor of physics at UC Berkeley. Zettl is at the forefront of research on nanotubes, which are extremely strong strands of pure carbon or boron nitride that can act as electrical conductors or semiconductors, yet also have interesting thermal and mechanical properties. To date, he has created nanobearings from a pair of telescoped nanotubes, a nanomotor with a nanotube as the shaft, and nanotube-based nanotransistors, chemical sensors and electron field emitters for flat panel displays.

“We’ll be designing new and modifying existing building blocks to make them accessible to assembling technologies to the point where you could order them like you order lumber at a lumberyard,” Zettl said. ”This is quite ambitious. There will be a lot of scientific and engineering challenges here.”

The advantage of nanoscale devices is not only small size but also small power consumption – the tinier the device, the less energy required to run it. Some of the devices, however, will generate energy, either chemically or mechanically or via light. Many of the building blocks and structures based on them will first be examined theoretically, with only the most promising candidates pursued experimentally.

The group consists of 28 researchers from UC Berkeley, UC Merced, Stanford University and the California Institute of Technology, and includes not only engineers, physicists, chemists and biologists, but an economist. While some of the researchers are synthesizing and characterizing various building blocks, others will integrate them and map out system properties, and still others will develop the tools to manipulate and construct new building blocks and systems. Several researchers will pursue the theoretical basics and limits of new devices. And Brad DeLong, a UC Berkeley professor of economics, will explore the social, ethical, legal and societal issues surrounding nanotechnology in light of historical technology revolutions. He also will encourage conversations between nanoscientists and scholars in the social sciences and humanities.

“What COINS will do is bring together faculty and students who can make nanoscale building blocks, predict and measure their unique properties, and assemble these building blocks into devices and systems. This, in turn, will lead to revolutionary new applications in information technology, energy and healthcare,” said UC Berkeley’s Tom Kalil, a special assistant to Chancellor Robert J. Birgeneau. Kalil helped meld the diverse group of researchers into a coherent center that captured the attention of the NSF.

Researchers in the center will be able to make advantage of the new research facilities that are being created by the two California Institutes for Science and Innovation located at UC Berkeley – the Center for Information Technology Research in the Interest of Society (CITRIS) and the California Institute for Quantitative Biomedical Research (QB3).

Some of the researchers and their projects include:

  • Mechanical engineering professor Arun Majumdar has developed arrays of nanoscale cantilevers that flex like diving boards when molecules bind to them. Majumdar, along with Michael Roukes, professor of physics, applied physics and bioengineering at Caltech, and other collaborators will try to turn these into biosensors using lasers to detect the binding of minute quantities of chemicals.
  • Electrical engineering professor Ron Fearing is working with Peidong Yang, associate professor of chemistry, and Thomas Kenny, professor of mechanical engineering at Stanford, to create artificial nanohairs that will adhere to surfaces as do the toe hairs of geckos.
  • Carlos Bustamante, professor of physics, and other researchers are trying to convert the chemical energy in twisted DNA into mechanical energy that can crank a nanotube motor. Bustamante is working with physics professors Michael Crommie and Steve Louie; Kyeongjae Cho, professor of mechanical engineering at Stanford; and theoretical biologist George Oster, UC Berkeley professor of molecular and cell biology.
  • A team led by Majumdar and Ramamoorthy Ramesh, professor of materials science and engineering and of physics, is studying the movement of fluids on the nanoscale in order to develop a battery. This research also could lead to a novel type of transistor based on nanofluidics.
  • Researchers with the Berkeley Sensor and Actuator Sensor, which 18 years ago pioneered microscale devices or MEMS (microelectromechanical systems), are transitioning to the nanoscale with attempts to create devices from nanowires, such as a vibrating resonator. They include Roger Howe and Jeffrey Bokor, professors of electrical engineering and computer science, and Roya Maboudian, associate professor of chemical engineering.
  • Zettl, Bustamante and Maboudian will work with chemistry professors Jean Frechet and Paul Alivisatos, as well as with other collaborators, to camouflage nanomaterials so as to allow the binding of tailored molecules, proteins and other biological molecules. These “functionalized” nanomaterials could mimic large biological molecules in the body.

A major education and outreach component of the center involves not only undergraduate education at UC Berkeley and UC Merced, but also public outreach through the Lawrence Hall of Science. And decision-makers in Sacramento will be briefed on nanotechnology and other important scientific issues through a new program called “Capitol Science,” organized with UC Berkeley’s Institute for Governmental Studies.

A student group, the year-old Berkeley Nanotechnology Club, has even been brought into the center to provide an important point of contact between student entrepreneurs in science, engineering, business and law to encourage technology transfer to the marketplace.

The club “encourages the formation of teams of science and engineering students with Haas School of Business students to develop business plans around some of the new technologies that will emerge from the new center,” Kalil said. He noted that UC Berkeley has already spun off several nanotechnology companies, including Nanomix Inc., Nanosys Inc., Quantum Dot Corp. and Kalinex, Inc.


Contact:

Robert Sanders
rsanders@berkeley.edu
510-643-6998

Copyright © UCB

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nanoscale Science and Engineering Centers

National Science Foundation

Related News Press

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Investments/IPO's/Splits

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Nanometrics to Participate in 7th Annual CEO Investor Summit 2015: Investor Event Held Concurrently With SEMICON West in San Francisco June 25th, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Nanowire LED Innovator Aledia Completes $31 Million Series B Financing June 18th, 2015

Molecular Machines

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Sensors

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Nanoelectronics

New technology using silver may hold key to electronics advances July 2nd, 2015

Exagan Raises €5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Leti to Present Solutions to New Applications Using 3D Technologies at SEMICON West LetiDay Event, July 14: Leti Experts also Will Speak at TechXPOT Session on MEMS and STS Session on Lithography Cost-and-Productivity Issues Below 14nm June 22nd, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project