Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UB Researchers to Help Design Navy's All-Electric Warship

Abstract:
A University at Buffalo electronic-packaging researcher is helping the U.S. Navy to develop a next generation all-electric warship.

UB Researchers to Help Design Navy's All-Electric Warship

Size of warship's electrical components and crew will be downsized significantly Buffalo, NY, October 19, 2004

A University at Buffalo electronic-packaging researcher is helping the U.S. Navy to develop a next generation all-electric warship that will revolutionize the Navy's use of weaponry and manpower.

The electric warship's system architecture to be designed by Cemal Basaran, director of the Electronic Packaging Laboratory in the UB School of Engineering and Applied Sciences, and other researchers working on the project for the Navy will make available throughout the entire ship onboard electric power generated by the ship's power plants and mechanical propulsion system.

Standard shipboard electrical systems currently are unable to distribute this immense electrical power to all parts of the ship, making impractical the use of advanced weapons and sensors that require a lot of power, according to the Navy.

Increased power availability will lead to computerization of most of the electric warship's operations, which will make manpower redundant. The electric warship will require a crew of 100, compared to traditional battleship crew that numbers in the thousands, according to Navy estimates.

The Navy plans to have the electric warship operational by 2012.

Basaran, under a $500,000 Navy grant, will design next-generation power electronics capable of carrying high-current density and high-power to all parts of the warship, using nano and microelectronics technology. This will be a critical component of the ship's system architecture, Basaran says.

"The next-generation power electronics that will control the ship will lead to major improvements in effectiveness, survivability and cost savings, as well as a significant reduction in the size of the vessel's components," he adds.

Basaran and co-researchers in the UB Electronic Packaging Lab are renowned for their pioneering work in designing and testing micro- and nanoscale electronic packaging. Their work, already in use by companies such as Intel, has helped produce smaller, faster and longer-lasting electronic devices at much lower cost. They have developed advanced computer models to simulate and predict electronic packaging fatigue life and reliability under extremely harsh service conditions, such as in a Navy warship.

"Our job is to design and test for the Navy micro- and nanoscale, electronic packages that maintain reliability under extremely harsh conditions resulting from concurrently acting vibrations, high-current density, high-power and high-temperature loads," says Basaran, an associate professor in the Department of Civil, Structural and Environmental Engineering.

"The state-of-the art electronic packaging technology cannot handle the huge electrical power needed by an electric ship's warfare and civilian components in micron and nanoscale packages."

The warship's integrated electric system will reduce significantly size and electrical power consumption presently occurring in traditional Navy ships. By significantly shrinking the size of a ship's power components, the Navy will free up onboard space that can be used for other functions, according to Basaran, a recipient in 1997 of the U.S. Navy Office of Naval Research Young Investigator Award.

"Right now most electrical components are huge and waste too much power, but they don't need to," Basaran says. "We can reduce their size and waste by orders of magnitude, while increasing their ability to handle high current-density and high-power levels in harsh environments, significantly."

Navy funding and collaborating funding from New York State Office of Science Technology and Academic Research (NYSTAR) and corporate grants will fund the work of six doctoral students on the project, according to Basaran.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Contact:

John Della Contrada
dellacon@buffalo.edu
P: 716-645-5000 ext 1409
F: 716-645-3765

Copyright © University at Buffalo

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Electronic Packaging Laboratory

Related News Press

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Investments/IPO's/Splits

Pixelligent Closes $5.5 Million in Funding: Capital Will Be Used to Support Global Customer Growth December 12th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Arrowhead to Present at Upcoming Conferences November 15th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Military

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE