Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > UB Researchers to Help Design Navy's All-Electric Warship

A University at Buffalo electronic-packaging researcher is helping the U.S. Navy to develop a next generation all-electric warship.

UB Researchers to Help Design Navy's All-Electric Warship

Size of warship's electrical components and crew will be downsized significantly Buffalo, NY, October 19, 2004

A University at Buffalo electronic-packaging researcher is helping the U.S. Navy to develop a next generation all-electric warship that will revolutionize the Navy's use of weaponry and manpower.

The electric warship's system architecture to be designed by Cemal Basaran, director of the Electronic Packaging Laboratory in the UB School of Engineering and Applied Sciences, and other researchers working on the project for the Navy will make available throughout the entire ship onboard electric power generated by the ship's power plants and mechanical propulsion system.

Standard shipboard electrical systems currently are unable to distribute this immense electrical power to all parts of the ship, making impractical the use of advanced weapons and sensors that require a lot of power, according to the Navy.

Increased power availability will lead to computerization of most of the electric warship's operations, which will make manpower redundant. The electric warship will require a crew of 100, compared to traditional battleship crew that numbers in the thousands, according to Navy estimates.

The Navy plans to have the electric warship operational by 2012.

Basaran, under a $500,000 Navy grant, will design next-generation power electronics capable of carrying high-current density and high-power to all parts of the warship, using nano and microelectronics technology. This will be a critical component of the ship's system architecture, Basaran says.

"The next-generation power electronics that will control the ship will lead to major improvements in effectiveness, survivability and cost savings, as well as a significant reduction in the size of the vessel's components," he adds.

Basaran and co-researchers in the UB Electronic Packaging Lab are renowned for their pioneering work in designing and testing micro- and nanoscale electronic packaging. Their work, already in use by companies such as Intel, has helped produce smaller, faster and longer-lasting electronic devices at much lower cost. They have developed advanced computer models to simulate and predict electronic packaging fatigue life and reliability under extremely harsh service conditions, such as in a Navy warship.

"Our job is to design and test for the Navy micro- and nanoscale, electronic packages that maintain reliability under extremely harsh conditions resulting from concurrently acting vibrations, high-current density, high-power and high-temperature loads," says Basaran, an associate professor in the Department of Civil, Structural and Environmental Engineering.

"The state-of-the art electronic packaging technology cannot handle the huge electrical power needed by an electric ship's warfare and civilian components in micron and nanoscale packages."

The warship's integrated electric system will reduce significantly size and electrical power consumption presently occurring in traditional Navy ships. By significantly shrinking the size of a ship's power components, the Navy will free up onboard space that can be used for other functions, according to Basaran, a recipient in 1997 of the U.S. Navy Office of Naval Research Young Investigator Award.

"Right now most electrical components are huge and waste too much power, but they don't need to," Basaran says. "We can reduce their size and waste by orders of magnitude, while increasing their ability to handle high current-density and high-power levels in harsh environments, significantly."

Navy funding and collaborating funding from New York State Office of Science Technology and Academic Research (NYSTAR) and corporate grants will fund the work of six doctoral students on the project, according to Basaran.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.


John Della Contrada
P: 716-645-5000 ext 1409
F: 716-645-3765

Copyright © University at Buffalo

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Electronic Packaging Laboratory

Related News Press

Possible Futures

Nanocarriers may carry new hope for brain cancer therapy: Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier November 22nd, 2015

Quantum Spin Could Create Unstoppable, One-Dimensional Electron Waves: New theory points the way forward to transform atom-thin materials into powerful conductors November 18th, 2015

Pioneering research boosts graphene revolution November 17th, 2015

Rice makes light-driven nanosubmarines: Speedy single-molecule submersibles are a first November 16th, 2015


Nanometrics Announces Upcoming Investor Events November 18th, 2015

Harris & Harris Group Portfolio Company, D-Wave Systems, Announces Multi-Year Agreement With Lockheed Martin November 16th, 2015

Arrowhead Late-Breaking Clinical Data Shows that ARC-520 Can Produce Deep and Durable Reductions of Hepatitis B Viral Antigens and DNA November 16th, 2015

Harris & Harris Group Portfolio Company, D-Wave Systems, Announces the Sale of Its Latest Quantum Computer to Los Alamos National Laboratory November 11th, 2015


Researchers find new, inexpensive way to clean water from oil sands production November 24th, 2015

Production of Nanocapsules Containing Omega-3 Powder in Iran November 24th, 2015

Tandem solar cells are simply better: Higher efficiency thanks to perovskite magic crystal November 24th, 2015

UCLA nanoscientists develop safer, faster way to remove pollutants from water November 23rd, 2015


UMD & Army researchers discover salty solution to better, safer batteries: Greatest potential uses seen in safety-critical, automotive and grid-storage applications November 21st, 2015

Navy researchers recruit luminescent nanoparticles to image brain function November 19th, 2015

NIST team proves 'spooky action at a distance' is really real November 14th, 2015

Nanopores could take the salt out of seawater November 10th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic