Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UB Researchers to Help Design Navy's All-Electric Warship

Abstract:
A University at Buffalo electronic-packaging researcher is helping the U.S. Navy to develop a next generation all-electric warship.

UB Researchers to Help Design Navy's All-Electric Warship

Size of warship's electrical components and crew will be downsized significantly Buffalo, NY, October 19, 2004

A University at Buffalo electronic-packaging researcher is helping the U.S. Navy to develop a next generation all-electric warship that will revolutionize the Navy's use of weaponry and manpower.

The electric warship's system architecture to be designed by Cemal Basaran, director of the Electronic Packaging Laboratory in the UB School of Engineering and Applied Sciences, and other researchers working on the project for the Navy will make available throughout the entire ship onboard electric power generated by the ship's power plants and mechanical propulsion system.

Standard shipboard electrical systems currently are unable to distribute this immense electrical power to all parts of the ship, making impractical the use of advanced weapons and sensors that require a lot of power, according to the Navy.

Increased power availability will lead to computerization of most of the electric warship's operations, which will make manpower redundant. The electric warship will require a crew of 100, compared to traditional battleship crew that numbers in the thousands, according to Navy estimates.

The Navy plans to have the electric warship operational by 2012.

Basaran, under a $500,000 Navy grant, will design next-generation power electronics capable of carrying high-current density and high-power to all parts of the warship, using nano and microelectronics technology. This will be a critical component of the ship's system architecture, Basaran says.

"The next-generation power electronics that will control the ship will lead to major improvements in effectiveness, survivability and cost savings, as well as a significant reduction in the size of the vessel's components," he adds.

Basaran and co-researchers in the UB Electronic Packaging Lab are renowned for their pioneering work in designing and testing micro- and nanoscale electronic packaging. Their work, already in use by companies such as Intel, has helped produce smaller, faster and longer-lasting electronic devices at much lower cost. They have developed advanced computer models to simulate and predict electronic packaging fatigue life and reliability under extremely harsh service conditions, such as in a Navy warship.

"Our job is to design and test for the Navy micro- and nanoscale, electronic packages that maintain reliability under extremely harsh conditions resulting from concurrently acting vibrations, high-current density, high-power and high-temperature loads," says Basaran, an associate professor in the Department of Civil, Structural and Environmental Engineering.

"The state-of-the art electronic packaging technology cannot handle the huge electrical power needed by an electric ship's warfare and civilian components in micron and nanoscale packages."

The warship's integrated electric system will reduce significantly size and electrical power consumption presently occurring in traditional Navy ships. By significantly shrinking the size of a ship's power components, the Navy will free up onboard space that can be used for other functions, according to Basaran, a recipient in 1997 of the U.S. Navy Office of Naval Research Young Investigator Award.

"Right now most electrical components are huge and waste too much power, but they don't need to," Basaran says. "We can reduce their size and waste by orders of magnitude, while increasing their ability to handle high current-density and high-power levels in harsh environments, significantly."

Navy funding and collaborating funding from New York State Office of Science Technology and Academic Research (NYSTAR) and corporate grants will fund the work of six doctoral students on the project, according to Basaran.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Contact:

John Della Contrada
dellacon@buffalo.edu
P: 716-645-5000 ext 1409
F: 716-645-3765

Copyright © University at Buffalo

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Electronic Packaging Laboratory

Related News Press

Possible Futures

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Investments/IPO's/Splits

Nanowire LED Innovator Aledia Announces €30 ($36M) Million Series-C Financing: Intel Capital Joins Existing Investors to Commercialize Certain Nanowire-LED Technologies for Mobile Displays January 29th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Military

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project