Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nano-bullet for non-invasive treatment of cancers

Abstract:
Virginia Commonwealth University physicists have created a so-called "nano-bullet" that targets tumors and may help scientists develop non-invasive cancer treatments.

VCU scientists studying nano-bullet for non-invasive treatment of cancers

Richmond, VA, October 20, 2004

Virginia Commonwealth University physicists, working with one of the most precious materials on Earth – gold -- and with one of the most common – sand -- have created a so-called “nano-bullet” that targets tumors and may help scientists develop non-invasive cancer treatments.

The scientists found that when gold particles are reduced to a few nano-meters -- just billionths of a meter -- they become highly reactive and readily bind to silica clusters, allowing the cluster to absorb infrared light and create enough heat to potentially kill cancer tumors. Silica is the main element in sand.

In the October 2004 issue of the American Physical Society journal Physical Review Letters, VCU researchers, led by Puru Jena, Ph.D., examined the electronic structure and bonding properties of gold and silica. They observed a dramatic change in the physical properties of both elements when their sizes were reduced to two or three nano-meters.

The scientists identified several defects and dangling bonds on the silicon atoms, which provide potential absorption sites for the gold atoms. The gold atoms readily accept electrons, and the new gold coating on the silicon atoms completely changes the charge distribution and electronic structure of the silica cluster. The gold coating on silica results in a significant change in the optical gap, which is a critical factor in determining how light is absorbed.

“We have shown that a cluster of only three silicon atoms and six oxygen atoms can bind at least three gold atoms,” wrote Jena, senior author of the article. “As a result, the optical gap of the cluster becomes greatly reduced to the point that it can absorb infrared radiation.

”Therefore, the cluster becomes hot, which in turn can destroy tumor cells,” Jena wrote.

Previous studies have tested gold-coated silica shells that were approximately 100 to 200 nanometers for the treatment of cancer tumors. In the VCU study, Jena and his team examined particles that were much smaller.

“The advantage of using smaller particles is that they can be inserted into any part of the human body and treat cancer cells in their infancy,” he said. “Historically, both gold and silica have been used in bio-materials. The biocompatibility of these materials at the nanoscale will be investigated,” he added.

“The next step in the research is to synthesize the tiny gold-coated silica clusters and measure their energy gap,” Jena said. “The measured energy gap will verify the accuracy of the theoretical prediction, and hence confirm the view that these clusters can absorb infrared radiation.”

Silica, which is one of the most abundant elements on Earth, has a wide range of applications in microelectronics, optical communications, and thin film technology. Gold, known for its resistance to corrosion, does not oxidize like other metals and it is chemically inert. However, gold particles become very reactive when they are reduced to a very small size.

Jena collaborated with Qiang Sun, Ph.D., and Qian Wang, Ph.D., both postdoctoral fellows in the VCU’s physics department.


About VCU and the VCU Medical Center:

Located on two downtown campuses in Richmond, Va., Virginia Commonwealth University is ranked nationally by the Carnegie Foundation as a top research institution and enrolls more than 28,000 students in more than 170 certificate, undergraduate, graduate, professional and doctoral programs in the arts, sciences and humanities in 15 schools and one college. Forty of the university’s programs are unique in Virginia, and 20 graduate and professional programs have been ranked by U.S. News & World Report as among the best of their kind. MCV Hospitals, clinics and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the leading academic medical centers in the country. For more, see www.vcu.edu.

Contact:

Sathya Achia-Abraham
or Anne Buckley
sbachia@vcu.edu
albuckley@vcu.edu
(804) 828-1231

Copyright © Virginia Commonwealth University

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project