Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano-bullet for non-invasive treatment of cancers

Abstract:
Virginia Commonwealth University physicists have created a so-called "nano-bullet" that targets tumors and may help scientists develop non-invasive cancer treatments.

VCU scientists studying nano-bullet for non-invasive treatment of cancers

Richmond, VA, October 20, 2004

Virginia Commonwealth University physicists, working with one of the most precious materials on Earth – gold -- and with one of the most common – sand -- have created a so-called “nano-bullet” that targets tumors and may help scientists develop non-invasive cancer treatments.

The scientists found that when gold particles are reduced to a few nano-meters -- just billionths of a meter -- they become highly reactive and readily bind to silica clusters, allowing the cluster to absorb infrared light and create enough heat to potentially kill cancer tumors. Silica is the main element in sand.

In the October 2004 issue of the American Physical Society journal Physical Review Letters, VCU researchers, led by Puru Jena, Ph.D., examined the electronic structure and bonding properties of gold and silica. They observed a dramatic change in the physical properties of both elements when their sizes were reduced to two or three nano-meters.

The scientists identified several defects and dangling bonds on the silicon atoms, which provide potential absorption sites for the gold atoms. The gold atoms readily accept electrons, and the new gold coating on the silicon atoms completely changes the charge distribution and electronic structure of the silica cluster. The gold coating on silica results in a significant change in the optical gap, which is a critical factor in determining how light is absorbed.

“We have shown that a cluster of only three silicon atoms and six oxygen atoms can bind at least three gold atoms,” wrote Jena, senior author of the article. “As a result, the optical gap of the cluster becomes greatly reduced to the point that it can absorb infrared radiation.

”Therefore, the cluster becomes hot, which in turn can destroy tumor cells,” Jena wrote.

Previous studies have tested gold-coated silica shells that were approximately 100 to 200 nanometers for the treatment of cancer tumors. In the VCU study, Jena and his team examined particles that were much smaller.

“The advantage of using smaller particles is that they can be inserted into any part of the human body and treat cancer cells in their infancy,” he said. “Historically, both gold and silica have been used in bio-materials. The biocompatibility of these materials at the nanoscale will be investigated,” he added.

“The next step in the research is to synthesize the tiny gold-coated silica clusters and measure their energy gap,” Jena said. “The measured energy gap will verify the accuracy of the theoretical prediction, and hence confirm the view that these clusters can absorb infrared radiation.”

Silica, which is one of the most abundant elements on Earth, has a wide range of applications in microelectronics, optical communications, and thin film technology. Gold, known for its resistance to corrosion, does not oxidize like other metals and it is chemically inert. However, gold particles become very reactive when they are reduced to a very small size.

Jena collaborated with Qiang Sun, Ph.D., and Qian Wang, Ph.D., both postdoctoral fellows in the VCU’s physics department.


About VCU and the VCU Medical Center:

Located on two downtown campuses in Richmond, Va., Virginia Commonwealth University is ranked nationally by the Carnegie Foundation as a top research institution and enrolls more than 28,000 students in more than 170 certificate, undergraduate, graduate, professional and doctoral programs in the arts, sciences and humanities in 15 schools and one college. Forty of the university’s programs are unique in Virginia, and 20 graduate and professional programs have been ranked by U.S. News & World Report as among the best of their kind. MCV Hospitals, clinics and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the leading academic medical centers in the country. For more, see www.vcu.edu.

Contact:

Sathya Achia-Abraham
or Anne Buckley
sbachia@vcu.edu
albuckley@vcu.edu
(804) 828-1231

Copyright © Virginia Commonwealth University

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanomedicine

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic