Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NanoDynamics Signs Joint Venture

Abstract:
NanoDynamics announced today that it has signed a joint venture agreement with New Zealand-based technology company, Nano Cluster Devices Ltd (NCD).

NanoDynamics Signs Joint Venture to Commercialize New Zealand Company's Technology Platform

Novel Cluster Assembly Methodology Produces Self-Assembled Nanowires Extending Fabrication Technology of Semiconductors and Electronic Components

Buffalo, NY. October 18, 2004

NanoDynamics, a leading nanotechnology organization and manufacturer of superior nanomaterials, announced today that it has signed a joint venture agreement with New Zealand-based technology company, Nano Cluster Devices Ltd (NCD). NanoDynamics will be working to commercialize NCD's technology process for self-assembly of nanowires in production of semiconductors and electronic components. Under the agreement, NanoDynamics will be responsible for sales and application development, as the Company targets semiconductor companies, consumer applications, aerospace, biotech and industrial manufacturers. NCD will be responsible for the further advancement of the technology platform.

"Over the past two years, NanoDynamics has successfully identified a number of exciting nanotechnologies, each possessing significant commercial potential," said, Keith Blakely, CEO of NanoDynamics. "As part of our corporate strategy, NanoDynamics is building an intellectual property portfolio able to provide significant product and technology value to a wide range of customers and partners.

Through our own discovery and invention process, along with technology acquisitions and partnerships, we are expanding our technology and product offerings to the electronics, semiconductor, energy, biomedical, transportation, and other markets. Our management team has a long and successful track record launching commercial products from new technologies, particularly in the area of advanced materials, and we anticipate the Company will achieve significant market penetration in 2005."

NCD, in conjunction with the University of Canterbury, has developed a novel technology platform to produce electrically conducting nanowires through the deposition of atomic clusters onto lithographically prepared templates. The NCD technology produces small, well-controlled linear structures with different functionalities on a range of substrates. The key feature of NCD's technology is that it is essentially a self-assembly process, which means that slow manipulation of nano-sized building blocks, which is often unavoidable in many other nanotechnologies, is completely avoided. The nanowires produced are smaller in size, and more economical to apply due to their controlled placement and use of existing semiconductor processes. The methodology can be utilized across a wide range of applications including:

  • Hydrogen and other chemical sensors for power distribution and other industries;
  • Elements for smaller, faster magnetic read heads for computer hard drives that are now found in music players and TV set top boxes; also,
  • Discrete transistors and interconnects for various semiconductor and electronic devices.

Dr. Simon Brown, the key inventor of NCD's technology, and an Executive Director of the company says, "The partnership with NanoDynamics is a major step forward in our strategic plan to introduce our enabling technology to a broad range of industrial partners. As a leading supplier of nanomaterials, NanoDynamics already offers advanced material solutions to the semiconductor, microelectronic, and technology markets. Our nanowire deposition technology is an important new tool for creating high value products in these segments. There is an excellent fit between the companies and we expect a long and constructive partnership."

To further advance this technology platform, NanoDynamics has named Peter Hauser Director of Business Development for this product line. Peter has extensive experience in photolithography and other semiconductor related technologies that are key to the success of this project. Peter will work closely with Dr. Alan Rae, Vice President of Market and Business Development who also has extensive electronics experience.

About NanoCluster Devices Ltd.

Nano Cluster Devices Ltd, formed in early 2003, has developed novel methods for taking clusters of atoms and forming them into electrically conducting wire and has established a comprehensive Patent Portfolio based on these methods. The Company, funded by prominent New Zealand investors, raised $NZ2.75 million in its initial round and is strategically located in Christchurch, the Silicon Valley of the South. As a result, Nano Cluster Devices has access to top researchers, facilities and qualified employee base through its affiliation with local universities and a comprehensive nanotechnology research and development culture that has some of the best available equipment (funded by the MacDiarmid Institute Centre of Research Excellence). More information is available on the Company's website at www.nanoclusterdevices.com.

About NanoDynamics

NanoDynamics, Inc. is a leading company in the field of nanotechnology and manufacturer of superior nanomaterials that will dramatically improve the form, function and performance of a wide range of both industrial and consumer products. The Company is uniquely positioned, utilizing proprietary and protected technologies, to commercially manufacture economical, high quality nanomaterials that will enable revolutionary advancements in industries including electronics, semiconductors, consumer products, fuel cells, transportation, energy and biotechnology. For further information, please visit the Company's website at www.nanodynamics.com.

Contact:

Berns Communications Group, LLC
Stacy Berns/Michael McMullan
212-994-4660

Copyright Business Wire 2004

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Investments/IPO's/Splits

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Harris & Harris Group Portfolio Company, Bridgelux, Enters into Agreement to be Acquired by an Investment Group July 22nd, 2015

Harris & Harris Group Portfolio Company, OpGen, Gains $6 Million Investment From Merck GHI in Addition to New Acquisition July 16th, 2015

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Self Assembly

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project