Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Device allows naked eye to see motion of 10 nanometers

September 30th, 2004

Device allows naked eye to see motion of 10 nanometers

Abstract:
A new class of very small handheld devices can detect motion a thousand times more subtly than any tool known. "There was nothing in the [optics] literature to predict that this would happen," says Sandia National Laboratories researcher Dustin Carr of his group’s device, which reflects a bright light from a very small moving object.

Story:

Sandia creates motion detector 1,000 times more sensitive than any known

Device allows naked eye to see motion of 10 nanometers

Albuquerque, N.M. September 29, 2004

A new class of very small handheld devices can detect motion a thousand times more subtly than any tool known.

“There was nothing in the [optics] literature to predict that this would happen,” says Sandia National Laboratories researcher Dustin Carr of his group’s device, which reflects a bright light from a very small moving object.

Sandia is a National Nuclear Security Administration laboratory.

Carr, who earlier gained fame as a graduate student at Cornell for his creation of a nanoguitar, was selected this week by MIT’s science magazine Technology Review as one of the year’s top 100 researchers under the age of 35.

The patent-applied-for device will be the subject of an invited talk at the SPIE Optics East convention in Philadelphia in October, delivered by Sandia team member Bianca Keeler.

Sandia researcher Bianca Keeler studies very fine motion formerly unobservable by human eye but now revealed by a laser beam interacting with an unusual diffraction grating fabricated at Sandia’s Microelectronic Development Laboratory. Courtesy and © Copyright SNL. Click for large version.

Like shadow pictures projected onto a wall by shining light through the fingers of one hand moving over the fingers of the other, the relatively simple measuring device depends upon a formerly unrecognized property of optics: light diffracted from very small gratings that move very small lateral distances undergoes a relatively big, and thus easily measurable, change in reflection. A motion of 10 nanometers can be seen by the naked eye, says Carr.

A nanometer is one-thousandth of a micron, which is one millionth of a meter.

As for the device, size matters and small is crucial. “In standard MEMS [microelectromechanical] applications, though the devices are small, very few things that sell are dominated by a search for further miniaturization. There’s not a motivation in MEMS to make things still smaller as a matter of cost. Economics of scale for integrated circuits just don’t apply to MEMS. But our device couldn’t exist unless you made it this small,” he says. Features are in the 100-200 nanometer range, with 300 nm between top and bottom combs and 600 to 900 nm between comb teeth.

Sub-wavelength interference effects cause the visual display.

“Making use of the effect is fairly obvious once you realize it happens,” he says.

Fabricated out of polysilicon by standard lithography techniques like those used to make MEMS devices, the Sandia system uses two tiny comb-like structures (instead of fingers) laid one over each other. The bottom comb is locked rigidly in place. The top comb is secured only by horizontal springs. Any tiny motion sends the top comb skittering over the bottom comb, laterally deforming the grating. A very tiny disturbance changes by an unexpectedly large amount the amplitude of light — in the visible to near-infrared range — diffracted from a tiny laser beam shining upon the apparatus.

SEM (scanning electron micrograph) of the device, with scale bar at bottom representing 10 microns. The top grating layer is suspended by 4 springs and actuated by two side comb drives. The second, fixed grating layer is hidden below the first. The area of the grating itself is 10 microns x 10 microns. Courtesy and © Copyright SNL. Click for large version.

The measuring device, still in the laboratory stage, is in effect a kind of accelerometer, about the size of the inexpensive microelectromechanical devices that open automobile air bags. Fabricated by the same processes that mass-produce silicon computer chips, the device has multiple possible uses.

“If you can make very sensitive detectors very cheaply and very small, there are huge applications,” says Carr. “Made small, synchronized, cheap, and placed on every block, we could take data from all these sensors at once and measure the motion of the earth when there’s not an earthquake. So we could learn what leads up to one.”

Another use would be for skid and traction control in cars, detecting if the back end of the car is moving in a different direction from the front end.

“Such devices also could take the place of inertial navigation systems,” Carr says. These typically require large gyroscopes to keep commercial airplanes moving on a preset course. “We could have handheld-sized devices on Volkswagens that would work even in a tunnel.”

Other defense applications are possible, he says.

He sees a time frame of three to five years before the devices are available for use.

Says James Walker, former Director of Advanced Technologies at Tellium, Inc., former manager of the MEMS Network Element Sub-systems Group at Lucent, Bell Laboratories, and now an independent consultant and patent agent, “To my understanding, it is the first time anyone has tried to manipulate the optical near-field region in order to affect changes to the far-field characteristics of a grating. The ability to do this is a direct result of the nano-scale nature of the device. Due to its high responsivity-to-displacement ratio, I see it having significant, far-reaching application in areas as diverse as chemical sensing, infrared imaging, accelerometry, and displays.”


Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Media Contact:

Neal Singer
nsinger@sandia.gov
(505) 845-7078

Copyright © SNL

If you have a comment, please us.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Sensors

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Discoveries

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic