Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Researchers Develop Improved Method to Produce Nanometer-scale Patterns

August 30th, 2004

Researchers Develop Improved Method to Produce Nanometer-scale Patterns

Abstract:
Researchers from the Georgia Institute of Technology and the Naval Research Laboratory (NRL) have developed an improved method for directly writing nanometer-scale patterns onto a variety of surfaces.
Infrared microscope image shows a cantilever during heating. The colors correspond to temperature, the hottest reaching approximately 200 degrees Celsius. The microcantilevers are engineered such that the temperature increases only near the free end. The new writing method, dubbed “thermal dip pen nanolithography,” represents an important extension for dip pen nanolithography (DPN), an increasingly popular technique that uses atomic force microscopy (AFM) probes as pens to produce nanometer-scale patterns.

Source:
GTResearchnews

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Strain improves performance of atomically thin semiconductor material May 11th, 2018

Discoveries

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project