Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Ultra-fast Laser Allows Efficient, Accessible Nanoscale Machining

April 20th, 2004

Ultra-fast Laser Allows Efficient, Accessible Nanoscale Machining

Abstract:
Think of a microscopic milling machine, capable of cutting just about any material with better-than-laser precision, in 3-D---and at the nanometer scale. In a paper published this week in the Proceedings of the National Academy of Sciences, University of Michigan researchers explain how and why using a femtosecond pulsed laser enables extraordinarily precise nanomachining. The capabilities of the ultra-fast or ultra-short pulsed laser have significant implications for basic scientific research, and for practical applications in the nanotechnology industry.

Source:
Newswise

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE