Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > PNNL develops mercury-absorbing pollution solution

March 31st, 2004

PNNL develops mercury-absorbing pollution solution

Abstract:
Scientists at the Department of Energy's Pacific Northwest National Laboratory have developed a novel material that can remove mercury and other toxic substances from coal-burning power-plant waste water. PNNL's synthetic material features a nanoporous ceramic substrate with a specifically tailored pore size and a very high surface area. The surface area of one teaspoon of this substance is equivalent to that of a football field. "This substance has proven to be an effective and voracious tool for absorbing mercury," said Shas Mattigod, lead chemist and PNNL project manager. Pore sizes can be tailored for specific tasks.

Source:
EurekAlert

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Products

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Discoveries

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project