Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Manufacturing Upheaval

March 28th, 2004

Manufacturing Upheaval

Abstract:
A more cost-effective method of manufacturing microchips will gradually replace multi-billion-dollar foundries with table-top boxes, marking the end of the silicon era and the potential death of many factory-floor jobs. This was the message from Douglas Mulhall, author of Our Molecular Future (and member of CRN's Board of Advisors), at a recent IT conference in Canada.

Source:
Responsible Nanotechnology

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Molecular Nanotechnology

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Advantages emerge in using nanostructured material in the forging process of mechanical components February 28th, 2014

Stirring-up atomtronics in a quantum circuit: What's so 'super' about this superfluid February 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE