Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > News > Molecular memories, once doubted, prove durable and practical

December 2nd, 2003

Molecular memories, once doubted, prove durable and practical

In the ongoing quest to create computing devices that are both incredibly small and incredibly powerful, scientists – envisioning a future beyond the limits of traditional semiconductors – have been working to use molecules for information storage and processing. Until now, researchers were skeptical that such molecular devices could survive the rigors of real-world manufacturing and use, which involve high temperatures and up to one trillion operational cycles. But scientists at the University of California, Riverside and North Carolina State University have demonstrated that molecular memories are indeed both durable and practical – a finding that could spur development of the technology.


Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Memory Technology

Nanomagnets: Creating order out of chaos: Dresden physicists engrave nanoscale magnets directly into layer of material November 23rd, 2015

NUS scientists developed super sensitive magnetic sensor: New type of hybrid sensor technology shown to be more than 200 times more sensitive than commercially available sensors November 1st, 2015

Successful industrialization of high-density 3D integrated silicon capacitors for ultra-miniaturized electronic components: Three high-tech SMEs finalize the joint EU-funded PICS project on innovative ALD materials and manufacturing equipment October 22nd, 2015

Researchers from Kiel and Bochum develop new information storage device October 13th, 2015


New Model Presented to Design, Produce Electronic Nanodevices November 6th, 2015

GLOBALFOUNDRIES Achieves 14nm FinFET Technology Success for Next-Generation AMD Products: Leading-edge foundry’s proven silicon technology poised to help enable significant performance and power efficiency improvements for AMD’s next-generation products November 6th, 2015

USF team finds new way of computing with interaction-dependent state change of nanomagnets: University of South Florida engineering researchers find nano-scale magnets could compute complex functions significantly faster than conventional computers October 29th, 2015

Nanoquakes probe new 2-dimensional material: Collaborative research between UC Riverside and the University of Augsburg, Germany, opens up new ways of understanding monolayer films for (opto-)electronic applications October 26th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic