Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Helical piezoelectric 'nanosprings' could be actuators & transducers

October 16th, 2003

Helical piezoelectric 'nanosprings' could be actuators & transducers

Abstract:
Researchers at the Georgia Institute of Technology have developed a new class of nanometer-scale structures that spontaneously form helical shapes from long ribbon-like single crystals of zinc oxide (ZnO). Dubbed "nanosprings," the new structures have piezoelectric and electrostatic polarization properties that could make them useful in small-scale sensing and micro-system applications. Just 10 to 60 nanometers wide and 5-20 nanometers thick - but up to several millimeters long - the new structures are similar to but smaller than the "nanobelts" first reported by Georgia Tech scientists two years ago in the journal Science.

Source:
EurekAlert

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE