Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications

Abstract:
Gold. The word brings to mind wedding rings, buried treasure and California in the 1840's.

But when gold is reduced to 1/100,000 the size of a human hair, it takes on an entirely new personality.

By attaching gold nanoparticles to the surface of a microlaser, researchers in the USC Viterbi School of Engineering demonstrated a frequency comb that takes up less space and requires 1000 times less power than current comb technology.

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications

Los Angeles, CA | Posted on October 9th, 2017

A frequency comb is a device that can create a rainbow of light from a single color. These devices have been used to improve cybersecurity, detection of toxic chemicals, and GPS. However, these industrial combs are generated using large systems requiring watts of input power. In order to create smaller systems that could enable residential or portable applications, the power requirements for wavelength generation and the device size must be significantly reduced.

The research team led by Andrea Armani, a professor in the Mork Family Department of Chemical Engineering and Materials Science, has demonstrated frequency combs requiring only milliwatts of input power by attaching gold nanorods to the surface of a single microlaser. The interaction of the light from the microlaser with the gold particles results in many additional wavelengths being generated. This process is further improved by a polymer coating on the nanoparticles. The power reduction decreases the system's footprint and takes the technology from the lab to real-world applications where both power consumption and size are important.

"These results exemplify what can happen if researchers from different fields work together on a basic science problem that has applied research impact," said Armani, the Ray Irani Chair in Engineering and Materials Science, whose lab is part of the new USC Michelson Center for Convergent Bioscience.

"By combining expertise in optics and in nanomaterials, we made exceptionally fast progress that challenged and disproved the conventional thought in the field that gold nanoparticles would be detrimental to the laser."

Co-lead author Vinh Diep describes the project as using innovations in nanomaterials to solve an integrated optics problem.

"The role of the gold nanorods is to increase the intensity of the light circulating in the device," Diep said. "The higher-intensity light can then interact with organic molecules on the surface of the gold to generate other wavelengths of light. This combined effect allows for the comb generation to begin at a much lower power than the traditional pulsed-laser approach."

Diep, a Materials Science PhD student, explained that a frequency comb that contains numerous emission wavelengths over a large wavelength range is advantageous. By using the gold nanorod coating, the research team observed a comb that can span over a wavelength range of 300 nanometers. Without the gold nanorods, a comb could not be generated at the same power.

Demonstrating a large range shows the device's strong potential for applications in developing a portable chemical spectroscopy system, where the chemical signal only occurs at a specific wavelength, and the accuracy is dependent on the light source.

The research was led by Vinh Diep and Rigoberto Castro-Beltrán, a USC-Conacyt Scholar at the University of Guanajuato. Additional engineering researchers involved were fellow PhD student Soheil Soltani and post-doctoral scholar Eda Gungor. The study has been accepted for publication in ACS Photonics.

###

In recognition of its potential societal impact, the 2005 Nobel Prize in Physics was given for frequency comb generation.

####

About University of California Southern California
About the USC Michelson Center for Convergent Bioscience

The center brings together a diverse network of premier scientists and engineers from the USC Dornsife College of Letters, Arts and Sciences, USC Viterbi School of Engineering and Keck School of Medicine of USC to solve some of the greatest intractable problems of the 21st century - from autism, to cancer, to neurological disease, to cardiovascular disease. The team of world-class scientists representing several disciplines - engineering, biological sciences, computer science, chemistry, medicine, nanomedicine, neuroscience, and physics - will be the catalyst that precipitates a sea change in research and development at USC and the world, establishing a model for innovation in precision medicine that quickly translates from the bench to the bedside in the form of new drug therapies, cures, high-tech diagnostics and biomedical devices.

With a generous $50 million gift from Gary K. Michelson, a retired orthopedic spinal surgeon, and his wife, Alya Michelson, the USC Michelson Center for Convergent Bioscience is a transformative opportunity for USC to influence the course of scientific discovery and biomedicine for generations to come. The center is scheduled to open this fall.

USC Viterbi School of Engineering

Engineering Studies began at the University of Southern California in 1905. Nearly a century later, the Viterbi School of Engineering received a naming gift in 2004 from alumnus Andrew J. Viterbi, inventor of the Viterbi algorithm that is now key to cell phone technology and numerous data applications. One of the school's guiding principles is engineering +, a term coined by current Dean Yannis C. Yortsos, to use the power of engineering to address the world's greatest challenges. USC Viterbi is ranked among the top graduate programs in the world and enrolls more than 6,500 undergraduate and graduate students taught by 185 tenured and tenure-track faculty, with 73 endowed chairs and professorships. http://viterbi.usc.edu/

For more information, please click here

Contacts:
Amy Blumenthal

917-710-1897

Copyright © University of California Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New chip ramps up AI computing efficiency August 19th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project