Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > What can be discovered at the junction of physics and chemistry

These are closed-shell paramagnetic porphyrinoids.
CREDIT
Rashid Valiev
These are closed-shell paramagnetic porphyrinoids. CREDIT Rashid Valiev

Abstract:
TSU scientist Rashid Valiev and colleagues from the universities of Helsinki and Oslo have discovered a new type of rare molecules whose properties can be controlled by changing the induction of an external magnetic field. These are paramagnetic molecules from the class porphyrins. Porphyrins are part of hemoglobin and chlorophyll and are closely related to the processes of photosynthesis and respiration in living organisms. The results of the study were published in the journal Chemical Communications of the Royal British Chemical Society.

What can be discovered at the junction of physics and chemistry

Tomsk, Russia | Posted on October 6th, 2017

Open paramagnetic porphyrins with a closed electron shell are very rare molecules, because they have a specific electronic structure. Usually, molecules with such a structure are very unstable, and open porphyrins, on the contrary, are unchanged even in the air around us. This makes it possible to manipulate their physicochemical properties with an external magnetic field in various applied fields of magnetooptics and nanotechnology.

Since 2012, a group of scientists, which includes an assistant professor at TSU, has studied the aromatic nature of porphyrins and their derivatives. Aromaticity is a special property of some chemical compounds to exhibit anomalously high stability. That is an important concept in theoretical chemistry and is closely related to the problem of classifying and arranging organic molecules according to their reactivity. However, scientists define it using physics, in particular, they calculate in the molecules magnetically induced currents.

For me, it was always interesting for the physicist to connect our currents and the concept of aromaticity with the spectroscopic or physical properties of molecules,- says Rashid Valiev. - This was done in 2017 for highly antiaromatic porphyrins. Such molecules can be used in magnetooptical problems, where the control of physical properties of molecules is used by changing the induction of an external magnetic field. The fundamental significance of our result is that we explained the nature of the paramagnetism of these molecules.

Using theoretical methods of quantum chemistry, Valiev and his colleagues from the universities of Helsinki and Oslo studied the magnetic properties of seven molecules of isoflorines and carbaporphyrins, both synthesized and hypothetical. They showed that four of the seven molecules considered exhibit paramagnetism, and their spin is zero in the ground electronic state, which is an extremely rare case.

####

About National Research Tomsk State University
The Department of Optics and Spectroscopy of the Faculty of Physics and Engineering (head of the department is Victor Cherepanov), whose associate professor is Rashid Valiev, traditionally deals with the modeling of physical and chemical properties of molecules and molecular systems for various applied problems of medicine, astronomy, biology, and chemistry. The Faculty of Physics is part of the StrAU Institute of Smart Materials and Technology (SMTI).

For more information, please click here

Contacts:
Tatiana Arsenyeva

Copyright © National Research Tomsk State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Quantum Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project