Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > X-ray photoelectron spectroscopy under real ambient pressure conditions

(left) This is a picture of a front cone, a circular cone-shaped spectrometer component, taken from above. The 30 μm aperture created at the tip is the port where photoelectrons enter the spectrometer. (right) The peaks represent the photoelectron spectroscopic signals of gold thin film detected under atmospheric pressure of air.
CREDIT
INSTITUTE FOR MOLECULAR SCIENCE
(left) This is a picture of a front cone, a circular cone-shaped spectrometer component, taken from above. The 30 μm aperture created at the tip is the port where photoelectrons enter the spectrometer. (right) The peaks represent the photoelectron spectroscopic signals of gold thin film detected under atmospheric pressure of air. CREDIT INSTITUTE FOR MOLECULAR SCIENCE

Abstract:
Researchers at Institute for Molecular Science (IMS), Innovation Research Center for Fuel Cells, University of Electro-Communications, Research Center for Materials Science, Nagoya University, and JASRI (Japan Synchrotron Radiation Research Institute), have improved an ambient-pressure photoelectron spectroscopy instrument using hard X-rays*1 produced at SPring-8*2 and succeeded in photoelectron spectrometry*3 under real atmospheric pressure for the first time in the world. Their achievements has been published online in the "Applied Physics Express."

X-ray photoelectron spectroscopy under real ambient pressure conditions

Okazaki, Japan | Posted on June 28th, 2017

Conventional photoelectron spectroscopy can only measure samples under high vacuum, while many catalytic reactions occur under atmospheric pressure. The discrepancy between the findings obtained by experiments under high vacuum and the actual reaction mechanism under atmospheric pressure, "pressure gap," has been an issue. In recent years, in order to fill this gap, an apparatus called "ambient pressure photoelectron spectroscopy" has been developed that enables measurement under gas atmosphere. However, the upper-pressure limit of operation in a general ambient pressure photoelectron spectrometer is approximately 5,000 Pa. Even the apparatus with a currently reported world's highest performance has a limit of 15,000 Pa (approx. 0.15 atm), which is about 1/7 the atmospheric pressure (approx. 100,000 Pa). Therefore, various research groups in the world have been working on the development of photoelectron spectroscopy that operate under higher gas pressure.

A problem upon measurement using ambient pressure photoelectron spectrometer is "energy decay" of the photoelectrons emitted from the sample exposed to light, which is due to scattering caused by gas. This limits the upper-pressure of the measurement. "We made two improvements," explains Yasumasa Takagi, an assistant professor of IMS. "First, we used hard X-rays that has higher energy compared to soft X-rays and boosted kinetic energy of the photoelectrons. Next, we created an extremely tiny aperture of 30 μm in diameter (figure left), which is a port that accepts photoelectrons into the spectrometer. This enabled to shorten the distance between the sample and the aperture, i.e. the distance of photoelectron traveling through gas has shortened." Thus, using gold thin film as a sample, the research group succeeded in photoelectron spectroscopy under real atmospheric pressure, for the first time in the world (figure right).

Professor Toshihiko Yokoyama (IMS) has a vision of possibilities for future applications of the novel photoelectron spectrometer. "Our apparatus achieved photoelectron spectroscopy under real atmospheric pressure, which greatly broadened its range of application. Reactions between solid and gas such as catalytic reactions and electrode reactions in fuel cells can be directly examined under atmospheric pressure. It can be also applied to biological samples that are fragile under high vacuum. In the future, photoelectron spectroscopy will be used for state analysis in various research areas."

###

This research was supported by the Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science and by the Polymer Electrolyte Fuel Cell Program from the New Energy and Industrial Technology Development Organization (NEDO) Project.

*1 Soft X-rays / hard X-rays

Electromagnetic waves in the wavelength range of 1 pm to 10 nm are called X-rays. Those of long wavelengths are called soft X-rays and those of short wavelength are called hard X-rays. The shorter the wavelength, the higher the energy of the electromagnetic waves.

*2 SPring-8

SPring-8 is the world's largest synchrotron radiation facility, located in Harima Science Park, Hyogo Prefecture, Japan. It is managed by RIKEN and operated by JASRI. Synchrotron radiation refers to narrow and powerful electromagnetic waves that are produced when electrons are accelerated to nearly the speed of light and their traveling direction is bent by electromagnets. Synchrotron radiation from SPring-8 is widely used for nanotechnological, biotechnological, and industrial studies.

*3 Photoelectron spectroscopy

Method to observe conditions of a material by measuring the energy of photoelectrons emitted owing to the photoelectric effect when the material is irradiated with electromagnetic waves.

####

For more information, please click here

Contacts:
Yasumasa Takagi

81-564-557-341

Copyright © National Institutes of Natural Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project