Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties

Example of diamond crystallites of different shapes, obtained with the help of the technology, worked out in the Lomonosov Moscow State University. There are electron microscopy images of diamond films' fragments after their oxidation in the air. The material left after the oxidation is represented by needle-like diamond monocrystals of pyramid shape.
CREDIT
Alexander Obraztsov
Example of diamond crystallites of different shapes, obtained with the help of the technology, worked out in the Lomonosov Moscow State University. There are electron microscopy images of diamond films' fragments after their oxidation in the air. The material left after the oxidation is represented by needle-like diamond monocrystals of pyramid shape. CREDIT Alexander Obraztsov

Abstract:
Physicists from the Lomonosov Moscow State University have obtained diamond crystals in the form of a regular pyramid of micrometer size. Moreover, in cooperation with co-workers from other Russian and foreign research centers they have also studied the luminescence and electron emission properties of obtained diamond crystals. The research results have been represented in a serie of articles published in the leading peer review journals, the most recent appeared in Scientific Reports.

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties

Moscow, Russia | Posted on December 30th, 2016

Researchers from the Faculty of Physics, the Lomonosov Moscow State University, have described structural peculiarities of micrometer size diamond crystals of needle- and thread-like shapes, and their interrelation with luminescence features and efficiency of field electron emission. The luminescence properties of such thread-like diamond crystals could be used in different types of sensors, quantum optical devices and also for creation of element base for quantum computers and in other areas of science and technology.

The best friends of girls and technologists

Brilliants are polished rough diamond crystals and glorified as "a girl's best friend". Wide use of diamonds in various industrial processes is relatively less famous among ordinary people. However, technological application of diamonds significantly outweighs their jewelry usage and is constantly increasing both in terms of quantity and enhancing the diversity of areas of their application. Such high application significance turns out to be a constant motivation for researchers, busy with elaboration of new methods of diamond synthesis, processing and enduing with necessary features.

One of the problems, which are to be solved for a number of technology developments, is production of needle- and thread-like diamond crystals. Such shaping of original natural and synthetic diamonds is possible due to man-handling (polishing) in the same way as it happens during brilliant production. Other means imply usage of lithography and ion beam technologies, which help to separate fragments of necessary shape from crystals of large size. However, such "cutting" techniques are quite expensive and not always acceptable.

A team of researchers, working at the Faculty of Physics ofthe Lomonosov Moscow State University under the guidance of Professor Alexander Obraztsov, has suggested a technology, which makes possible mass production of small diamond crystals (or crystallites) of needle- and thread-like shapes. The first results, got during the studies in this direction, were published seven years ago in Diamond & Related Materials journal.

Alexander Obraztsov, Professor at the Department of Polymer and Crystal Physics, at the Faculty of Physics of the Lomonosov Moscow State University; Doctor of Science in Physics and Mathematics, being the main research author shares the following comments. He says: "The proposed technique involves usage of a well-known regularity, determining formation of polycrystalline films from crystallites of elongate ("columnar") shape. For instance, ice on a surface of lake often consists of such crystallites, what could be observed while it's melting. Usually, during diamond polycrystalline films production, one strives to provide such conditions, which allow crystallites of columnar shape, composing the films, to tightly connect with each other, creating dense homogeneous structure".

Everything, except diamonds, is gasified

Researchers from the Lomonosov Moscow State University have shown that diamond films, which have been previously perceived as "bad quality" ones as they consist of separate crystallites, not connecting with each other, now could be used for production of diamonds in the form of needle- or thread-like developments of regular pyramid form. In order to achieve this, it's necessary to heat such films to definite temperature in air or in another oxygen-containing environment. When heated, a part of the film material begins oxidizing and gasifies. Due to the fact that oxidation temperature depends on the carbon material features, and diamond crystallites oxidation need maximum temperature, it's possible to adjust this temperature so that all the material, except these diamond crystallites, is gasified. This relatively simple technology combines production of polycrystalline diamond films with specified structural characteristics with their heating in the air. It makes possible mass production of diamond crystallites of various shapes (needle- and thread-like ones and so on). Some idea about such crystallites can be obtained from electron microscopy images. The crystallites could be used, for instance, as high hardness elements: a cutter for high- precision processing, indenters or probes for scanning microscopes. Such application was described in the article, published earlier by the team in journal Review of Scientific Instruments. At the moment all probes, produced using this technology, are commercially offered.

It's possible to manage useful properties of a diamond

During follow-up research and developments, conducted at the Faculty of Physics, the Lomonosov Moscow State University, the initial technology has been significantly improved, what has allowed to diversify shapes and sizes of the needle-like crystallites and extend prospective field of their application. Researchers from the Lomonosov Moscow State University have drawn attention to optical properties of a diamond, which are of significant fundamental scientific and applied interest. The results of these studies are represented in the series of articles in Journal of Luminescence, Nanotechnology, and Scientific Reports.

These recent publications describe structural peculiarities of such diamond crystallites and their interrelation with luminescence features and efficiency of field electron emission. As it is mentioned by the researchers, the latter is, probably, the first example of genuine diamond field-emission (or cold) cathode realization. Many efforts have been made for its obtaining and studying of such kind of cathodes for the last two decades. Luminescence properties of the needle-like diamond crystals could be applied in different types of sensors, quantum optical devices and also in creation of element base for quantum computers and in other areas of science and technology.

Alexander Obraztsov further notices: "I'd especially like to highlight the significant input of young researchers - Viktor Kleshch and Rinat Ismagilov - to these studies. Their enthusiasm and intense work have allowed to get the above described results, which are truly new and possess fundamental scientific and applied importance".

The studies have been conducted with support of the Russian Science Foundation.

####

For more information, please click here

Contacts:
Vladimir Koryagin

Copyright © Lomonosov Moscow State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Quantum Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Crystallography

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals August 3rd, 2019

3-D-printed jars in ball-milling experiments June 29th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project