Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes

Abstract:
Whether it is clouds or champagne bubbles forming, or the early onset of Alzheimer's disease or Type 2 diabetes, a common mechanism is at work: nucleation processes.

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes

Washington, DC | Posted on November 24th, 2016

Nucleation processes are a first step in the structural rearrangement involved in the phase transition of matter: a liquid morphing into a gas, a gas becoming a liquid and so on. Clouds, boiling water, bubbles, and some disease stages are all characterized by the formation of a new thermodynamic phase which requires some of the smallest units of the new structure to form before this new phase can grow. Understanding this process is critical for preventing, halting or treating cases of nucleation processes gone wrong -- such as in human disease. Now, a team of researchers from University College London and the University of Cambridge in Great Britain in collaboration with Harvard University have made headway toward understanding this problem from a molecular point of view in a new study. Their finding is significant across an array of phenomena, from human disease to nanotechnology.

"Perhaps an intuitive example of nucleation would be the way in which a quiet dinner party suddenly transforms into a dancing one; such a transition usually requires several people to start dancing at once, acting as a 'nucleus' around which the dancing party assembles," explained An?ela Šari?, lead coauthor at the University College London and the University of Cambridge. The results of this study will appear this week in The Journal of Chemical Physics, from AIP Publishing.

"As commonly observed, if this group of dancers is too small, it tends to be ignored; however, above a certain size, this dancing nucleus attracts more and more people, eventually dominating the room," adds Thomas Michaels, the other lead coauthor. This minimum number of dancing people required to transform the party is what in thermodynamic terms is commonly known as the "critical nucleus."

In their research, the team considers a particularly intriguing example of a nucleated process: the formation of protein filaments. Many filamentous structures of proteins such as actin and tubulin are key for the growth, structural formation, movement and division of cells. They are an essential characteristic of living systems. However, protein filaments can also be disease-causing: Over 50 common disorders, including Alzheimer's disease, Parkinson's disease, and Type 2 diabetes, are associated with the formation and deposition in the brain or other organs of protein filaments commonly known as amyloids.

Using a combination of theory and computer simulations the authors explored the nucleation of protein filaments. Their goal was to establish the fundamental physical principles behind it. Their results showed that a seemingly complicated process of fibril nucleation is actually governed by a relatively simple physical mechanism: Unorganized clusters of proteins -- so-called oligomers -- are formed initially.

These structures do not resemble protein filaments yet, but have to undergo a structural conversion before they can grow into mature filaments, Šari? explained. They found that among many different steps in fibril nucleation, the shape change inside oligomers is the rate-determining step. Therefore, conformational changes in the protein inside oligomers (leading to the formation of β-sheet configurations) are crucial to understand fibril nucleation. Previously, the size of critical nucleus was considered the rate-determining factor.

The study represents an important step forward in the mechanistic understanding of the way in which protein filaments form. Such an understanding is key for studying the early stages in the onset of diseases associated with protein aggregation, as oligomers are increasingly believed to be the prime cause for cellular toxicity.

"Understanding which microscopic-level steps are determining for the formation of protein fibrils can provide invaluable information for designing rational therapies aimed at suppressing pathogenic oligomer generation," Šari? explained

Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications in materials science as biomaterials for nanotechnology," Michaels said. "Better control of filamentous growth would benefit the production of novel functional materials that have extensive applications in materials science as biomaterials for nanotechnology."

####

About American Institute of Physics
The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See jcp.aip.org.

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Kinetics of spontaneous filament nucleation via oligomers: Insights from theory and simulation," is authored by An?ela Šari?, Thomas C. T. Michaels, Alessio Zaccone, Tuomas P.J. Knowles and Daan Frenkel. The article will appear in the journal The Journal of Chemical Physics on Nov. 22, 2016 (DOI: 10.1063/1.4965040). After that date, it can be accessed at:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project