Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think

This is QUT's Dr Haifei Zhan with model of diamond nanothread.
CREDIT
Anthony Weate, QUT
This is QUT's Dr Haifei Zhan with model of diamond nanothread. CREDIT Anthony Weate, QUT

Abstract:
Would you dress in diamond nanothreads? It's not as far-fetched as you might think. And you'll have a Brisbane-based carbon chemist and engineer to thank for it.

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think

Brisbane, Australia | Posted on November 3rd, 2016

QUT's Dr Haifei Zhan is leading a global effort to work out how many ways humanity can use a newly-invented material with enormous potential - diamond nanothread (DNT).

First created by Pennsylvania State University last year, one-dimensional DNT is similar to carbon nanotubes, hollow cylindrical tubes 10,000 times smaller than human hair, stronger than steel - but brittle.

"DNT, by comparison, is even thinner, incorporating kinks of hydrogen in the carbon's hollow structure, called Stone-Wale (SW) transformation defects, which I've discovered reduces brittleness and adds flexibility," said Dr Zhan, from QUT's School of Chemistry, Physics and Mechanical Engineering.

"That structure makes DNT a great candidate for a range of uses. It's possible DNT may become as ubiquitous a plastic in the future, used in everything from clothing to cars.

"I feel very lucky to have this chance to study a new material in depth - blue-sky applied research opportunities like this are rare."

DNT does not look like a rock diamond. Rather, its name refers to the way the carbon atoms are packed together, similar to diamond, giving it its phenomenal strength.

Dr Zhan has been modelling the properties of DNT since it was invented, using large-scale molecular dynamics simulations and high-performance computing.

He was the first to realise the SW defects were the key to DNT's versatility.

"While both carbon nanotubes and DNT have great potential, the more I model DNT properties, the more it looks to be a superior material," Dr Zhan said.

"The SW defects give DNT a flexibility that rigid carbon nanotubes can't replicate - think of it as the difference between sewing with uncooked spaghetti and cooked spaghetti.

"My simulations have shown that the SW defects act like hinges, connecting straight sections of DNT. And by changing the spacing of those defects, we can a change - or tune - the flexibility of the DNT."

That research is published in the peer-reviewed publication Nanoscale.

Dr Zhan has also published a number of other results from his DNT-modelling research:

The thermal conductivity of DNT can be tuned by changing the spacing between the SW defects (Carbon).
SW defects create irregular surfaces on the DNT, allowing it to bond well with polymers. DNT could therefore be used as reinforcement for nanocomposite materials (Advanced Function Materials).
The mechanical properties of DNT vary significantly depending on its exact atomic structure, including tensile behaviour. Temperature also affects the mechanical properties. While DNT likely behaves like a flexible elastic rod, the mechanical properties could be tailored for specific purposes (Carbon).
"Further modelling is needed to fully investigate all the properties of DNT. However, I am excited about the potential range of applications it could be used for, given we've proven we can control its flexibility, conductivity and strength," Dr Zhang said.

"Carbon is the most abundant element on the planet. It's a renewable resource, so the cost of the raw material is extremely low.

"Once the manufacturing costs are viable, DNT would likely be used primarily in mechanical applications, combined with other materials to make ultra-strong, light-weight composites and components - such as plane fuselages.

"I plan to test how DNT performs as a two-dimensional networked structure - a sheet or layer - for potential use in flexible electronics and screens.

"I also want to test is viability as a fibre for textiles or rope, from bullet-proof vests and hard-wearing work gear to a replacement for steel cables in bridge construction.

"There's already talk in the global carbon community of DNT being the best candidate yet for building a space elevator. It would be a real honour if my research contributed to the development of DNTs for that purpose."

####

About Queensland University of Technology
QUT is part of a national collaborative group of five major Australian universities that form the ATN (Australian Technology Network of Universities).

For more information, please click here

Contacts:
Kate Haggman
07 3138 0358


After hours
Rose Trapnell
QUT Media team leader
0407 585 901

Copyright © Queensland University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

- QUT:

- Dr Haifei Zhan:

- Paper in Carbon (1):

- Paper in Advanced Function Materials:

- Paper in Carbon (2):

- Paper in Nanoscale:

Related News Press

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Display technology/LEDs/SS Lighting/OLEDs

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project