Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The quantum sniffer dog: A laser and detector in 1: A microscopic sensor has been developed at TU Wien, which can be used to identify different gases simultaneously

The laser (on the right) sends its light through a gas container, then the beam is reflected by a mirror (left).
CREDIT
TU Wien
The laser (on the right) sends its light through a gas container, then the beam is reflected by a mirror (left). CREDIT TU Wien

Abstract:
As humans, we sniff out different scents and aromas using chemical receptors in our noses. In technological gas detection, however, there are a whole host of other methods available. One such method is to use infrared lasers, passing a laser beam through the gas to an adjacent separate detector, which measures the degree of light attenuation it causes. TU Wien's tiny new sensor now brings together both sides within a single component, making it possible to use the same microscopic structure for both the emission and detection of infrared radiation.

The quantum sniffer dog: A laser and detector in 1: A microscopic sensor has been developed at TU Wien, which can be used to identify different gases simultaneously

Vienna, Austria | Posted on October 25th, 2016

Circular quantum cascade lasers

"The lasers that we produce are a far cry from ordinary laser pointers ," explains Rolf Szedlak from the Institute of Solid State Electronics at TU Wien. "We make what are known as quantum cascade lasers. They are made up of a sophisticated layered system of different materials and emit light in the infrared range."

When an electrical voltage is applied to this layered system, electrons pass through the laser. With the right selection of materials and layer thicknesses, the electrons always lose some of their energy when passing from one layer into the next. This energy is released in the form of light, creating an infrared laser beam.

"Our quantum cascade lasers are circular, with a diameter of less than half a millimetre," reports Prof. Gottfried Strasser, head of the Center for Micro- and Nanostructures at TU Wien. "Their geometric properties help to ensure that the laser only emits light at a very specific wavelength."

"This is perfect for chemical analysis of gases, as many gases absorb only very specific amounts of infrared light," explains Prof. Bernhard Lendl from the Institute of Chemical Technologies and Analytics at TU Wien. Gases can thus be reliably detected using their own individual infrared 'fingerprint'. Doing so requires a laser with the correct wavelength and a detector that measures the amount of infrared radiation swallowed up by the gas.

A laser that also detects

"Our microscopic structure has the major advantage of being a laser and detector in one," professes Rolf Szedlak. Two concentric quantum cascade rings are fitted for this purpose, which can both (depending on the operating mode) emit and detect light, even doing so at two slightly different wavelengths. One ring emits the laser light which passes through the gas before being reflected back by a mirror. The second ring then receives the reflected light and measures its strength. The two rings then immediately switch their roles, allowing the next measurement to be carried out.

In testing this new form of sensor, the TU Wien research team faced a truly daunting challenge: they had to differentiate isobutene and isobutane - two molecules which, in addition to confusingly similar names, also possess very similar chemical properties. The microscopic sensors passed this test with flying colours, reliably identifying both of the gases.

"Combining laser and detector brings many advantages," says Gottfried Strasser. "It allows for the production of extremely compact sensors, and conceivably, even an entire array - i.e. a cluster of microsensors - housed on a single chip and able to operate on several different wavelengths simultaneously." The application possibilities are virtually endless, ranging from environmental technology to medicine.

####

For more information, please click here

Contacts:
Florian Aigner

43-158-801-41027

Rolf Szedlak, MSc
Institute of Solid State Electronics
TU Wien
Floragasse 7, 1040 Vienna
T: +43-1-58801-36229

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project