Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A drop of water as a model for the interplay of adhesion and stiction

The boron nitride nanomesh superhoneycomb: nitrogen (green), boron (orange), rhodium (grey); distance between honeycombs 3.2 nm.
CREDIT: Marcella Iannuzzi, UZH & Ari Seitsonen, ENS Paris
The boron nitride nanomesh superhoneycomb: nitrogen (green), boron (orange), rhodium (grey); distance between honeycombs 3.2 nm.

CREDIT: Marcella Iannuzzi, UZH & Ari Seitsonen, ENS Paris

Abstract:
How can a gecko move across a ceiling upside down? Two mechanisms are responsible: Adhesion via billions of extremely fine hairs on its feet, which enable it to stick to ceilings and walls. And as soon as the gecko moves, it relies on stiction. However, any change of adhesion and stiction at macroscopic level is expressed on the nanometer scale through the change in the forces exerted between atoms and molecules.

A drop of water as a model for the interplay of adhesion and stiction

Zurich, Switzerland | Posted on June 30th, 2016

How a drop of water touches a honeycomb structure

An international team of researchers headed by Thomas Greber from the University of Zurich's Physik-Institut succeeded in changing the manner in which a drop of liquid adheres to a surface by altering the electric voltage applied to a water drop. The surface upon which the drop lies consists of a material known as nanomesh, a single boron nitride layer on metallic rhodium. The structure is shaped like honeycomb with a comb depth of 0.1 nanometers and comb-comb distance of 3.2 nanometers.

Macroscopically, the change in electrical voltage is expressed in the change of the contact angle between the drop and the nanomesh surface. The contact or wetting angle refers to the angle that a drop of liquid assumes with respect to the surface of a solid. This angle can be measured with the aid of backlit photographs.

Change in the surface structure alters the contact angle of the drop

On the nanometer scale, the change in voltage causes the following: The nitrogen bonds with the rhodium are replaced by hydrogen-rhodium bonds, which flattens the nanomesh structure. How strongly the boron nitride's nitrogen binds to the surface of the rhodium depends on its distance from and direction to the next rhodium atom. And this determines the honeycomb structure and depth of the boron nitride layer. If the voltage changes, hydrogen accumulates between the boron nitride and the rhodium layer, which causes the honeycomb boron nitride layer to become flat. Tunneling microscopy can be used to detect this nanoscopic effect - the change in the surface properties of the nanomesh - in the liquid.

"To understand and control the interplay between the macro and the nano-world is the real challenge in nanoscience," stresses Greber. After all, six orders of magnitude need to be bridged - from millimeters in length (10-3 m) to nanometers (10-9 m); that's a factor of one million. "Our model system of the electrically switchable nanomesh and a drop's observable contact angle enables us to access the fundamental phenomenon of the friction of liquids on surfaces more precisely. This should help us solve problems that crop up during lubrication more effectively, for instance." The research project actually appears on the cover of the latest issue of the renowned journal Nature.

On the one hand, the new system is interesting for biology. Applying this effect should make it possible to control the adhesion and movement of cells. Aspects such as cell migration or the formation of complex, multicellular structures with new scientific approaches might be researched as a result. On the other hand, technological applications such as capillary pumps, where the capillary height can be controlled via electrical voltage, or micro-capillaries, where the flow resistance can be controlled, are also conceivable.

###

About the study

The research results were achieved within the scope of the Sinergia Program of the Swiss National Science Foundation (SNSF). The SNSF uses this instrument to promote the collaboration between several research groups, which conduct research across disciplines with the prospect of ground-breaking results. Besides the University of Zurich, the Katholieke Universiteit Leuven, Vienna University of Technology and Empa were also involved.

####

For more information, please click here

Contacts:
Thomas Greber

41-446-355-744

Copyright © University of Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project