Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum calculations broaden the understanding of crystal catalysts: Quantum mechanics and a supercomputer help scientists to identify the position of atoms on the surface of rutile

This is a visualization of planes in crystal.
CREDIT: MIPT
This is a visualization of planes in crystal.

CREDIT: MIPT

Abstract:
Using numerical modelling, researchers from Russia, the US, and China have discovered previously unknown features of rutile TiO2, which is a promising photocatalyst. The calculations were performed at an MIPT laboratory on the supercomputer Rurik. The paper detailing the results has been published in the journal Physical Chemistry Chemical Physics.

Quantum calculations broaden the understanding of crystal catalysts: Quantum mechanics and a supercomputer help scientists to identify the position of atoms on the surface of rutile

Moscow, Russia | Posted on June 22nd, 2016

It's all on the surface

Special substances called catalysts are needed to accelerate or induce certain chemical reactions. Titanium dioxide (TiO2) is a good photocatalyst - when exposed to light it effectively breaks down water molecules, as well as hazardous organic contaminants. TiO2 is naturally found in the form of rutile and other minerals. One of the two most active surfaces of rutile R-TiO2 is a surface that is denoted as (011). The photocatalytic activity is linked to the way in which oxygen and titanium atoms are arranged on the surface. This is why it is important to understand which forms the surface of rutile can take.

In crystallography, atomic planes are written as three figures in brackets: each digit represents the intersection between the plane and one of the crystallographic axes a, b, and c. Parallel planes have the same index - the intersection coordinates are reduced to mutually prime numbers. This means that if a plane intersects axis a at point 1, axis b at point ˝ and does not intersect axis c at all, then it is not written as (1˝0), but (210). A plane that intersects each axis at point 2 is written as (111) instead of (222).

Compared to in the bulk, atoms on the surface have fewer neighbours and more dangling bonds, which means they have to regroup - the atomic structure undergoes a process of reconstruction. From previous experiments with rutile, the scientists knew that on the surface of R-TiO2(011) the most common reconstruction is (2×1), where the distance between atoms in one direction is doubled and in the other direction remains unchanged. When this surface was irradiated with a beam of accelerated electrons, the top oxygen atoms broke away and left one-dimensional rows (with a width of one atom) of empty spaces on the surface. These rows, known as oxygen vacancies, can increase the chemical reactivity of the surface.

The physicists also used data on the discovery of metastable forms of R-TiO2(011)-(2×1) - their existence is thermodynamically unfavourable under current conditions, but they do not rearrange themselves at the first opportunity, in the same way that supercooled water does not freeze in the absence of external disturbances. A number of models were proposed previously for the reconstruction of R-TiO2(011)-(2×1), but not all of them were consistent with the experimental data and had a reasonable structure.

The calculations

Once the atoms on the surface have rearranged into a new structure, their order can only remain stable under certain conditions. The stability of a certain arrangement can be predicted by a value known as the surface energy - this is the energy of the bonds between atoms on the surface in a unit of area.

The way in which the surface forms is not only affected by a particular environment, but also by the regrouping process of the atoms. Using special software and ab initio methods (computer modelling based on the fundamental laws of quantum mechanics), the scientists constructed a surface phase diagram - the dependence of surface energy on composition - and used it to determine which forms are metastable.

In addition, the researchers calculated the surface stress - the force acting on atoms on the surface - for the unreconstructed surface of rutile R-TiO2(011). These calculations led the scientists to conclude that R-TiO2(011) and the previously predicted titanyl-TiO2 and B(001)-TiO2 reconstructions must be metastable. To test the conclusion, the researchers modelled images of the surface of rutile R-TiO2(011) that could be obtained when studying samples with a scanning tunneling microscope. The simulated STM images were compared with images from real experiments.

The findings

The physicists found that the formation of B(001)-TiO2 and titanyl-TiO2 reconstructions is caused by surface stress; they concluded that these structures are metastable. The models developed were similar to those previously proposed, but their existence is more reasonable. The MF(111)-TiO model is less rich in oxygen than MF(111)-TiO3, and it explains why the reconstruction was observed in an oxygen-poor environment, i.e. in a vacuum at a high temperature. The titanyl-Ti2O3 model contains one-dimensional rows of oxygen vacancies, which led the scientists to suggest that the titanyl-TiO2 and titanyl-Ti2O3 reconstructions are formed before and after electron radiation respectively. The authors also suggested three new structures.

What now?

In terms of chemistry, rutile exhibits properties that are typical for acids. However, there is still no definitive explanation as to why this happens and why water is split into hydrogen and oxygen on the surface of rutile when it is exposed to light. The water breakdown reaction will help in producing environmentally-friendly fuel - hydrogen. TiO2 and light can also be used to purify and disinfect water, air, and other aqueous media. The authors of the study hope that their calculations will not only expand existing knowledge on the atomic structure of the surface of titanium dioxide, but will also provide a better understanding of its photocatalytic properties.

The corresponding author of the paper, Qinggao Wang, says, "The richness of surface phases is due to a combination of thermodynamic conditions and the effect of surface stress. Most importantly, we have emphasized the role of kinetics and analysed the metastability of surface structures, which has significantly broadened our current understanding."

####

For more information, please click here

Contacts:
Sergey Divakov

7-925-834-0978

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Quantum Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project