Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Flipping a chemical switch helps perovskite solar cells beat the heat

Thin films of crystalline materials called perovskites provide a promising new way of making inexpensive and efficient solar cells. Now, an international team of researchers has shown a way of flipping a chemical switch that converts one type of perovskite into another -- a type that has better thermal stability and is a better light absorber.
CREDIT: Padture Lab / Brown University
Thin films of crystalline materials called perovskites provide a promising new way of making inexpensive and efficient solar cells. Now, an international team of researchers has shown a way of flipping a chemical switch that converts one type of perovskite into another -- a type that has better thermal stability and is a better light absorber.

CREDIT: Padture Lab / Brown University

Abstract:
Thin films of crystalline materials called perovskites provide a promising new way of making inexpensive and efficient solar cells. Now, an international team of researchers has shown a way of flipping a chemical switch that converts one type of perovskite into another -- a type that has better thermal stability and is a better light absorber.

Flipping a chemical switch helps perovskite solar cells beat the heat

Providence, RI | Posted on April 26th, 2016

The study, by researchers from Brown University, the National Renewable Energy Laboratory (NREL) and the Chinese Academy of Sciences' Qingdao Institute of Bioenergy and Bioprocess Technology published in the Journal of the American Chemical Society, could be one more step toward bringing perovskite solar cells to the mass market.

"We've demonstrated a new procedure for making solar cells that can be more stable at moderate temperatures than the perovskite solar cells that most people are making currently," said Nitin Padture, professor in Brown's School of Engineering, director of Brown's Institute for Molecular and Nanoscale Innovation, and the senior co-author of the new paper. "The technique is simple and has the potential to be scaled up, which overcomes a real bottleneck in perovskite research at the moment."

Perovskites have emerged in recent years as a hot topic in the solar energy world. The efficiency with which they convert sunlight into electricity rivals that of traditional silicon solar cells, but perovskites are potentially much cheaper to produce. These new solar cells can also be made partially transparent for use in windows and skylights that can produce electricity, or to boost the efficiency of silicon solar cells by using the two in tandem.

Despite the promise, perovskite technology has several hurdles to clear -- one of which deals with thermal stability. Most of the perovskite solar cells produced today are made with of a type of perovskite called methylammonium lead triiodide (MAPbI3). The problem is that MAPbI3 tends to degrade at moderate temperatures.

"Solar cells need to operate at temperatures up to 85 degrees Celsius," said Yuanyuan Zhou, a graduate student at Brown who led the new research. "MAPbI3 degrades quite easily at those temperatures."

That's not ideal for solar panels that must last for many years. As a result, there's a growing interest in solar cells that use a type of perovskite called formamidinium lead triiodide (FAPbI3) instead. Research suggests that solar cells based on FAPbI3 can be more efficient and more thermally stable than MAPbI3. However, thin films of FAPbI3 perovskites are harder to make than MAPbI3 even at laboratory scale, Padture says, let alone making them large enough for commercial applications.

Part of the problem is that formamidinium has a different molecular shape than methylammonium. So as FAPbI3 crystals grow, they often lose the perovskite structure that is critical to absorbing light efficiently.

This latest research shows a simple way around that problem. The team started by making high-quality MAPbI3 thin films using techniques they had developed previously. They then exposed those MAPbI3 thin films to formamidine gas at 150 degrees Celsius. The material instantly converted from MAPbI3 to FAPbI3 while preserving the all-important microstructure and morphology of the original thin film.

"It's like flipping a switch," Padture said. "The gas pulls out the methylammonium from the crystal structure and stuffs in the formamidinium, and it does so without changing the morphology. We're taking advantage of a lot of experience in making excellent quality MAPbI3 thin films and simply converting them to FAPbI3 thin films while maintaining that excellent quality."

This latest research builds on the work this international team of researchers has been doing over the past year using gas-based techniques to make perovskites. The gas-based methods have the potential of improving the quality of the solar cells when scaled up to commercial proportions. The ability to switch from MAPbI3 to FAPbI3 marks another potentially useful step toward commercialization, the researchers say.

"The simplicity and the potential scalability of this method was inspired by our previous work on gas-based processing of MAPbI3 thin films, and now we can make high-efficiency FAPbI3-based perovskite solar cells that can be thermally more stable," Zhou said. "That's important for bringing perovskite solar cells to the market."

Laboratory scale perovskite solar cells made using this new method showed efficiency of around 18 percent -- not far off the 20 to 25 percent achieved by silicon solar cells.

"We plan to continue to work with the method in order to further improve the efficiency of the cells," said Kai Zhu, senior scientist at NREL and co-author of the new paper. "But this initial work demonstrates a promising new fabrication route."

###

Other authors on the paper were Mengjin Yang from NREL and Shuping Pang from CAS Qingdao Institute of Bioenergy and Bioprocess Technology. The work was supported by the National Science Foundation (DMR-1305913, OIA-1538893) and the Department of Energy (DE-FOA-0000990).

####

For more information, please click here

Contacts:
Kevin Stacey

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project