Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it

A simple heating device made by the researchers from unrefined pulverized coal, shown at left under visible light and at right in infrared light, showing the heat produced by the device.

Photo courtesy of the researchers
A simple heating device made by the researchers from unrefined pulverized coal, shown at left under visible light and at right in infrared light, showing the heat produced by the device.

Photo courtesy of the researchers

Abstract:
Jeffrey Grossman thinks we've been looking at coal all wrong. Instead of just setting it afire, thus ignoring the molecular complexity of this highly varied material, he says, we should be harnessing the real value of that diversity and complex chemistry. Coal could become the basis for solar panels, batteries, or electronic devices, he and his research team say.

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it

Cambridge, MA | Posted on April 20th, 2016

As a first demonstration of what they see as a broad range of potential high-tech uses for this traditionally low-tech material, Grossman, doctoral student Brent Keller, and research scientist Nicola Ferralis have succeeded in making a simple electrical heating device that could be used for defrosting car windows or airplane wings, or as part of a biomedical implant. In developing this initial application, they have also for the first time characterized in detail the chemical, electrical, and optical properties of thin films of four different kinds of coal: anthracite, lignite, and two bituminous types. Their findings have just been reported in the journal Nano Letters.

"When you look at coal as a material, and not just as something to burn, the chemistry is extremely rich," says Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems in the Department of Materials Science and Engineering (DMSE). The question he wanted to ask is, "Could we leverage the wealth of chemistry in things like coal to make devices that have useful functionality?" The answer, he says, is a resounding yes.

It turns out, for example, that naturally occurring coal varieties, without the purifying or refining that is needed to make electronic devices out of silicon, have a range of electrical conductivities that spans seven orders of magnitude (ten million times). That means that a given variety of coal could inherently provide the electrical properties needed for a particular component.

Designing a process

Part of the challenge was figuring out how to process the material, Grossman says. For that, Keller developed a series of steps to crush the material to a powder, put it in solution, then deposit it in thin uniform films on a substrate -- a necessary step in fabricating many electronic devices, from transistors to photovoltaics.

Even though coal has been one of the most widely used substances by human beings for centuries, its bulk electronic and optical properties had never really been studied for the purpose of advanced devices.

"The material has never been approached this way before," says Keller, who carried out much of the work as part of his doctoral thesis in DMSE, "to find out what the properties are, what unique features there might be." To do so, he developed a method for making thin films, which could then be tested in detail and used for device fabrication.

Even this new, detailed characterization they carried out is just the tip of a large iceberg, the team says. The four varieties selected are just a few of the hundreds that exist, all with likely significant differences. And preparing and testing the samples was, from the outset, an unusual process for materials scientists. "We usually want to make materials from scratch, carefully combining pure materials in precise ratios," says Ferralis, also in DMSE. In this case, though, the process involves "selecting from among this huge library of materials," all with their own different variations.

Using nature's complexity

While coal and other fossil fuels have long been used as feedstocks for the chemical industry, making everything from plastics to dyes and solvents, traditionally the material has been treated like other kinds of raw ore: something to be refined into its basic constituents, atoms, or simple molecules, which are then recombined to make the desired material. Using the chemistries that nature has provided, just as they are, is an unusual new approach. And the researchers found that by simply adjusting the temperature at which the coal is processed, they could tune many of the material's optical and electrical properties to exactly the desired values.

The simple heating device the team made as a proof of principle provides an end-to-end demonstration of how to use the material, from grinding the coal, to depositing it as a thin film and making it into a functional electronic device. Now, they say, the doors are opened for a wide variety of potential applications through further research.

The big potential advantage of the new material, Grossman says, is its low cost stemming from the inherently cheap base material, combined with simple solution processing that enables low fabrication costs. Much of the expense associated with chip-grade silicon or graphene, for example, is in the purification of the materials. Silica, the raw material for silicon chips, is cheap and abundant, but the highly refined form needed for electronics (typically 99.999 percent pure or more) is not. Using powdered coal could provide a significant advantage for many kinds of applications, thanks to the tunability of its properties, its high conductivity, and its robustness and thermal stability.

###

The work was made possible, Grossman says, thanks to a grant from the Bose Fellows Program at MIT, which encourages the kind of high-risk research embodied in this project. The work was also supported by ExxonMobil through the MIT Energy Initiative and the ExxonMobil Energy Fellow Program.

####

For more information, please click here

Contacts:
Sarah McDonnell

617-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: “Rethinking Coal: Thin films of solution processed natural carbon nanoparticles for electronic devices”:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Hardware

The present and future of computing get a boost from new research July 21st, 2023

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project