Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines

An artist’s interpretation of a nanomachine on a molecule. Knowing how energy and microscopic fluctuations relate will help scientists design more reliable nanomachines for applications ranging from drug delivery to fuel cell technology.

Image: MIT News
An artist’s interpretation of a nanomachine on a molecule. Knowing how energy and microscopic fluctuations relate will help scientists design more reliable nanomachines for applications ranging from drug delivery to fuel cell technology.

Image: MIT News

Abstract:
The world within a cell is a chaotic space, where the quantity and movement of molecules and proteins are in constant flux. Trying to predict how widely a protein or process may fluctuate is essential to knowing how well a cell is performing. But such predictions are hard to pin down in a cell’s open system, where everything can look hopelessly random.

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines

Cambridge, MA | Posted on March 22nd, 2016

Now physicists at MIT have proved that at least one factor can set a limit, or bound, on a given protein or process’ fluctuations: energy. Given the amount of energy that a cell is spending, or dissipating, the fluctuations in a particular protein’s quantity, for example, must be within a specific range; fluctuations outside this range would be deemed impossible, according to the laws of thermodynamics.

This idea also works in the opposite direction: Given a range of fluctuations in, say, the rate of a motor protein’s rotation, the researchers can determine the minimum amount of energy that the cell must be expending to drive that rotation.

“This ends up being a very powerful, general statement about what is physically possible, or what is not physically possible, in a microscopic system,” says Jeremy England, the Thomas D. and Virginia W. Cabot Assistant Professor of Physics at MIT. “It’s also a generally applicable design constraint for the architecture of anything you want to make at the nanoscale.”

For instance, knowing how energy and microscopic fluctuations relate will help scientists design more reliable nanomachines, for applications ranging from drug delivery to fuel cell technology. These tiny synthetic machines are designed to mimic a molecule’s motor-like behavior, but getting them to perform reliably at the nanoscale has proven extremely difficult.

“This is a general proof that shows that how much energy you feed the system is related in a quantitative way to how reliable you’ve made it,” England says. “Having this constraint immediately gives you intuition, and a sort of road-ready yardstick to hold up to whatever it is you’re trying to design, to see if it’s feasible, and to direct it toward things that are feasible.”

England and his colleagues, including Physics of Living Systems Fellow Todd Gingrich, postdoc Jordan Horowitz, and graduate student Nikolay Perunov, have published their results this week in Physical Review Letters.

Making sense of microscopic motions

The researchers’ paper was inspired by another study published last summer by scientists in Germany, who speculated that a cell’s energy dissipation might shape the fluctuations in certain microscopic processes. That paper addressed only typical fluctuations. England and his colleagues wondered whether the same results could be extended to include rare, “freak” instances, such as a sudden, temporary spike in a cell’s protein quantity.

The team started with a general master equation, a model that describes motion of small systems, be it in the number or directional rotation for a given protein. The researchers then employed large deviation theory, which is a mathematical technique that is used to determine the probability distributions of processes that occur over a long period time, to evaluate how a microscopic system such as a rotating protein would behave. They then calculated, essentially, how the system fluctuated over a long period of time — for instance, how often a protein rotated clockwise versus counterclockwise — and then developed a probability distribution for those fluctuations.

That distribution turns out to have a general form, which the team found could be bounded, or limited, by a simple mathematical expression. When they translated this expression into thermodynamic terms, to apply to the fluctuations in cells and other microscopic systems, they found that the bound boiled down to energy dissipation. In other words, how a microscopic system fluctuates is constrained by the energy put into the system.
“We have in mind trying to make some sense of molecular systems,” Gingrich says. “What this proof tells us is, even without observing every single feature, by measuring the amount of energy lost from the system to the environment, it teaches us and limits the set of possibilities of what could be going on with the microscopic motions.”

Pushing out of equilibrium

The team found that the minimum amount of energy required to produce a given distribution of fluctuations is related to a state that is “near-equilibrium.” Systems that are at equilibrium are essentially at rest, with no energy coming in or out of the system. Any movement within the system is entirely due to the effect of the surrounding temperature, and therefore, fluctuations in whether a protein turns clockwise or counterclockwise, for example, are completely random, with an equal chance of rotating in either direction. Near-equilibrium systems are close to this state of rest; directional motion is generated by a small input of energy, but many features of the motion still appear as they do in equilibrium.

Most living systems, however, operate far from equilibrium, with so much energy constantly flowing into and out of a cell that the fluctuations of molecular proteins and processes do not resemble anything in equilibrium. Lacking a similarity to equilibrium, it has been hard for scientists to uncover many general features of nonequilibrium fluctuations. England and his colleagues have shown that a comparison can nevertheless be made: Fluctuations occurring far from equilibrium must be at least as large as those that occur near equilibrium.

The team says scientists can use the relationships established in its proof to understand the energy requirements in certain cellular systems, as well as to design reliable synthetic molecular machines.

“One of the things that’s confusing about life is, it happens on a microscopic scale where there are a lot of processes that look pretty random,” Gingrich says. “We view this proof as a signpost: Here is one thing that at least must be true, even in those extreme, far-from-equilibrium situations where life is operating.”

This research was supported in part by the Gordon and Betty Moore Foundation.

####

For more information, please click here

Contacts:
Kimberly Allen

Phone: 617-253-2702
MIT News Office

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project