Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotweezer is new tool to create advanced plasmonic technologies

This rendering depicts a new type of "nanotweezer" that could aid efforts to create advanced technologies such as quantum computers and ultra-high-resolution displays.Purdue University image/Mikhail Shalaginov and Pamela Burroff-Murr
This rendering depicts a new type of "nanotweezer" that could aid efforts to create advanced technologies such as quantum computers and ultra-high-resolution displays.

Purdue University image/Mikhail Shalaginov and Pamela Burroff-Murr

Abstract:
Long-range and rapid transport of individual nanoobjects by a hybrid electrothermoplasmonic nanotweezer

Justus C. Ndukaife1,2, Alexander V. Kildishev1, Agbai George Agwu Nnanna2, Vladimir M. Shalaev1, Steven T. Wereley3 and Alexandra Boltasseva1,4*

1School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA. 2Water Institute, Purdue University Calumet, Hammond, Indiana 46323, USA. 3School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA. 4DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark. *email:

Plasmon-enhanced optical trapping is being actively studied to provide efficient manipulation of nanometer-sized objects. However, a long-standing issue with previously proposed solutions is how to controllably load the trap on-demand without relying on Brownian diffusion. Here, we show that the photo-induced heating of a nanoantenna in conjunction with an applied a.c. electric field can initiate rapid microscale fluid motion and particle transport with a velocity exceeding 10 μms –1, which is over two orders of magnitude faster than previously predicted. Our electrothermoplasmonic device enables on-demand long-range and rapid delivery of single nanoobjects to specific plasmonic nanoantennas, where they can be trapped and even locked in place. We also present a physical model that elucidates the role of both heat-induced fluidic motion and plasmonic field enhancement in the plasmon-assisted optical trapping process. Finally, by applying a d.c. field or low-frequency a.c. field (below 10 Hz) while the particle is held in the trap by the gradient force, the trapped nanoobjects can be immobilized into plasmonic hotspots, thereby providing the potential for effective low-power nanomanufacturing on-chip.

Nanotweezer is new tool to create advanced plasmonic technologies

West Lafayette, IN | Posted on November 2nd, 2015

A new type of "nanotweezer" capable of positioning tiny objects quickly and accurately and freezing them in place could enable improved nanoscale sensing methods and aid research to manufacture advanced technologies such as quantum computers and ultra-high-resolution displays.

The device, fabricated at Purdue University's Birck Nanotechnology Center, uses a cylindrical gold "nanoantenna" with a diameter of 320 nanometers, or about 1/300th the width of a human hair. The structures concentrate and absorb light, resulting in "plasmonic hotspots" and making it possible to manipulate nanometer-scale objects suspended in a fluid.

"The proposed approach enables the immediate implementation of a myriad of exciting applications," said Alexandra Boltasseva, associate professor of electrical and computer engineering.

Findings are detailed in a paper appearing online in Nature Nanotechnology Monday (Nov. 2).

Plasmonic devices harness clouds of electrons called surface plasmons to manipulate and control light. Potential applications for the nanotweezer include improved-sensitivity nanoscale sensors and the study of synthetic and natural nanoobjects including viruses and proteins; creation of "nanoassemblies" for plasmonic materials that could enable a host of advanced technologies; ultra-resolution "optofluidic" displays; and plasmonic circuitry for quantum logic units.

The nanotweezer might be used to create devices containing nanodiamond particles or other nanoscale light-emitting structures that can be used to enhance the production of single photons, workhorses of quantum information processing, which could bring superior computers, cryptography and communications technologies.

Conventional computers use electrons to process information. However, the performance might be ramped up considerably by employing the unique quantum properties of electrons and photons, said Vladimir M. Shalaev, co-director of a new Purdue Quantum Center, scientific director of nanophotonics at the Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering.

"The nanotweezer system has been shown to cause convection in fluid on-demand, resulting in micrometer-per-second nanoparticle transport by harnessing a single plasmonic nanoantenna, which until now has been thought to be impossible," said doctoral student Justus C. Ndukaife.

Previous research had shown that convection using a single plasmonic nanoantenna was too weak to induce such a strong convection, below 10 nanometers per second, which cannot result in a net transport of suspended particles.

However, the Purdue researchers have overcome this limitation, increasing the velocity of particle transport by 100 times by applying an alternating current electric field in conjunction with heating the plasmonic nanoantenna using a laser to induce a force far stronger than otherwise possible.

"The local electromagnetic field intensity is highly enhanced, over 200 times, at the plasmonic hotspot," Ndukaife said. "The interesting thing about this system is that not only can we trap particles but also do useful tasks because we have these hotspots. If I bring a particle to the hotspot then I can do measurements, and sensing is enhanced because it is in a hotspot."

The new hybrid nanotweezer combines a near-infrared laser light and an electric field, inducing an "electrothermoplasmonic flow."

"Then, once we turn off the electric field the laser holds the particles in place, so it can operate in two modes. First, the fast transport using alternating current, and then you turn off the electric field and it goes into the plasmonic tweezing mode," he said.

The Purdue researchers are the first to induce electrothermoplasmonic flow using plasmonic structures.

The system also makes it possible to create patterns to project images, potentially for displays with ultra-fine resolution.

The laser traps the particles, making it possible to precisely position them. The technique was demonstrated with polystyrene particles.

The paper was authored by Ndukaife; Alexander V. Kildishev, an associate professor of electrical and computer engineering; Agbai George Agwu Nnanna, a professor of mechanical engineering; Shalaev; Steven T. Wereley, a professor of mechanical engineering; and Boltasseva.

The ongoing research is based at the Birck Nanotechnology Center and is funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Vladimir Shalaev
765-494-9855


Alexandra Boltasseva
765-494-0301

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project