Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Giving atoms their marching orders: Highly homogeneous nanotube enforces single-file flow of atoms in gas diffusion. Direct comparison of single-file and Fickian diffusion possible with new system described by researchers at the University of South Carolina and University of Flor

The building blocks that make up Shimizu's 'molecular straws' are cyclic organic compounds, which self-assemble into hollow tubes. The smaller ring (compound labeled 1; top) self-assembles into straws with narrow-bore interiors that can accommodate xenon atoms only in single file.
CREDIT: Adapted from ACS Nano
The building blocks that make up Shimizu's 'molecular straws' are cyclic organic compounds, which self-assemble into hollow tubes. The smaller ring (compound labeled 1; top) self-assembles into straws with narrow-bore interiors that can accommodate xenon atoms only in single file.

CREDIT: Adapted from ACS Nano

Abstract:
Chemistry professor Linda Shimizu oversees a series of crowd-pleasing chemistry demonstrations in middle and high schools throughout central South Carolina every year. They are spirited affairs, and her research in the laboratory is just as dynamic -- but with a sense of order that really keeps atoms in line.

Giving atoms their marching orders: Highly homogeneous nanotube enforces single-file flow of atoms in gas diffusion. Direct comparison of single-file and Fickian diffusion possible with new system described by researchers at the University of South Carolina and University of Flor

Columbia, SC | Posted on June 24th, 2015

Shimizu's lab recently developed a new system for studying gas flow in the most constricted environment possible. She and her co-workers have synthesized tubes so narrow that atoms can only move through them in single file.

Her team builds the tiny tubes by harnessing a process rooted in a molecular kind of self-love. The chemists first synthesize a cyclic organic compound -- a molecular doughnut, if you will -- that, by design, has an affinity for its own kind. When the molecular doughnuts are dissolved in a solvent and encounter each other in solution, they stack end-to-end like a roll of Life-Savers.

Understanding the fundamental laws of attraction when it comes to molecules, the researchers designed the rings so that they stick to one another. Dissolving the molecular doughnuts results in molecular self-assembly: the rings stack together to create long, hollow tubes made up of about a million rings. They're extremely long straws on a molecular scale.

Shimizu's team has devised the means of synthesizing two different rings that generate two distinct molecular tubes: one has a narrow, oval bore, and the other has a larger, circular bore.

Working in collaboration with Russ Bowers' lab at the University of Florida, Shimizu and her team recently published a paper in ACS Nano that demonstrated the unique gas-flow properties of the molecular tubes.

Using xenon, a rare noble gas suitable for nuclear magnetic resonance (NMR) studies, they showed that the narrow-bore tube has just enough room for the gas atoms to flow through single file. In fact, there wasn't even enough room for that without adding a little pressure.

"The tube's dimensions are actually a little bit smaller than the xenon atoms," Shimizu says. "Under high pressure, the xenon actually gets a little distorted to get pushed in there, and because the samples are so homogeneous the Bowers group is able to really follow it by NMR."

The large-bore tube is a different sort of conduit. It's wide enough to accommodate two of the gas atoms within its circumference. Flow through the large-bore tube has enough space that atoms can overtake one another within its confines.

Being able to compare how gas atoms diffuse in the two different molecular straws and understand the fundamental processes involved is an active research area that could have industrial impact in gas separation and membrane technology down the line, Shimizu says. And the two straws that her team has constructed so far are just a beginning.

"We're able to control the size and shape of the straws, and the kinds of functional groups that are in the channels," Shimizu says. "So we can ask some basic questions about how gases flowing through interact with the channel wall. This is just our starting point."

####

For more information, please click here

Contacts:
Steven Powell

803-777-1923

Copyright © University of South Carolina

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project