Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > $8.5M Grant For Developing Nano Printing Technology: 4-D printing to advance chemistry, materials sciences and defense capabilities

Abstract:
Northwestern University’s International Institute for Nanotechnology (IIN) has received a five-year, $8.5 million grant from the U.S. Department of Defense’s competitive Multidisciplinary University Research Initiative (MURI) program to develop a “4-dimensional printer” -- the next generation of printing technology for the scientific world.

$8.5M Grant For Developing Nano Printing Technology: 4-D printing to advance chemistry, materials sciences and defense capabilities

Evanston, IL | Posted on June 18th, 2015

Once developed, the 4-D printer, operating on the nanoscale, will be used to construct new devices for research in chemistry, materials sciences and U.S. defense-related areas that could lead to new chemical and biological sensors, catalysts, microchip designs and materials designed to respond to specific materials or signals.

“This research promises to bring transformative advancement to the development of biosensors, adaptive optics, artificially engineered tissues and more by utilizing nanotechnology,” said IIN director and chemist Chad A. Mirkin, who is leading the multi-institution project. Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences.

The award, issued by the Air Force Office of Scientific Research, supports a team of experts from Northwestern, the University of Miami, the University of California, San Diego, and the University of Maryland.

In science, “printing” encodes information at specific locations on a material’s surface, similar to how we print words on paper with ink. The 4-dimensional printer will consist of millions of tiny elastomeric “pens” that can be used individually and independently to create nanometer-size features composed of hard or soft materials.

The information encoded can be in the form of materials with a defined set of chemical and physical properties. The printing speed and resolution determine the amount and complexity of the information that can be encoded.

Progress in fields ranging from biology to chemical sensing to computing currently are limited by the lack of low-cost equipment that can perform high-resolution printing and 3-dimensional patterning on hard materials (e.g., metals and semiconductors) and soft materials (e.g., organic and biological materials) at nanometer resolution (approximately 1,000 times smaller than the width of a human hair).

“Ultimately, the 4-D printer will provide a foundation for a new generation of tools to develop novel architectures, wherein the hard materials that form the functional components of electronics can be merged with biological or soft materials,” said Milan Mrksich, a co-principal investigator on the grant.

Mrksich is the Henry Wade Rogers Professor of Biomedical Engineering, Chemistry and Cell and Molecular Biology, with appointments in the McCormick School of Engineering and Applied Science, Weinberg and Northwestern University Feinberg School of Medicine.

“Researchers at Northwestern’s International Institute for Nanotechnology have a history of developing the state-of-the-art tools enabling nanotechnology,” said Jay Walsh, vice president for research at Northwestern. “This new 4-D printing effort represents a wonderful example of a multi-institutional collaboration that capitalizes on such expertise and couples it with expertise at other institutions.”

Mirkin invented and developed one of the first molecular printing techniques: dip-pen nanolithography (DPN). This technique uses an atomic force microscope and a sharp tip to deliver small packets of molecules to a surface. The molecules are designed to react with the surface to form stable single-molecule-thick structures. In 2012, National Geographic named DPN one of the “100 Scientific Discoveries That Changed the World.”

The International Institute for Nanotechnology is an umbrella organization that represents and unites over $800 million in nanotechnology research, education and supporting infrastructure.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Synthetic Biology

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

The medicine of the future could be artificial life forms October 6th, 2023

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

3D & 4D printing/Additive-manufacturing

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023

3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project