Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive'

Abstract:
They are 'strange' materials, insulators on the inside and conductors on the surface. They also have properties that make them excellent candidates for the development of spintronics ('spin-based electronics') and more in general quantum computing. However, they are also elusive as their properties are extremely difficult to observe. Now a SISSA study, published in Physical Review Letters, proposes a new family of materials whose topological state can be directly observed experimentally, thus simplifying things for researchers.

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive'

Trieste, Italy | Posted on May 12th, 2015

"What interests us of topological insulators is not so much that their being insulators but that they exhibit conducting states on their surface" explains SISSA researcher Massimo Capone. "This features makes them unique, as none of the other insulating or conducting materials exhibits this dichotomy. Unfortunately, the characteristics that describe these materials are very subtle, such that they are truly difficult to identify and study". The latest paper by Capone and co-workers published in Physical Review Letters explains how such characteristics could be found in materials with more evident properties, thus simplifying research in this field and opening up new possibilities.

The mathematical explanation of why some materials are insulators and others are conductors was one of the first tangible results of the theory of quantum mechanics. Quantum mechanical models postulate that, in solids, the atoms making up the material may only have certain energy states ("positions" where the electrons spin around the nucleus) but not others. "Possible and impossible states alternate in a band pattern", explains Capone. "In insulators some bands are completely "occupied", and others are empty, whereas in conductors some empty places remain within a band". Topological insulators resemble normal insulators, with the difference that the energy states are inverted. "It's as if the bands contained artificial holes", continues Capone.

Conduction in these materials is strange for another reason as well. "The electrons contained in the energy layers have a spin, which we can think of as a direction of rotation around their axis. In a metal (a conductor), the electrons driven by an electrical field normally move in the same direction, independent of their spin, whereas in these topological insulators electrons with opposite spin propagate in opposite directions", says Adriano Amaricci, another SISSA researcher involved in the project. "This feature makes them attractive for spintronics". In fact, in electronics the information is encoded in sequences or strings of 0's and 1's, which correspond to "on" and "off" states, whereas in spintronics the 0's and 1's correspond to the type of spin, which may be only "up" or "down". Topological insulators could constitute the material basis for this alphabet.

More in detail...

The feature distinguishing topological insulators from a normal metal is very abstract and elusive. "To have an idea, try to compare this situation with the difference between a magnetic and non-magnetic state. The latter is a difference that can easily be measured", explains Amaricci.

The properties of topological insulators are instead abstract and mathematically defined, so it is difficult to know when we are dealing with such a material. "Through the use of a mathematical model and simulations, we demonstrated that new topological insulators can be found in materials that exhibit 'spectacular' features that are easily detected owing to strong electron-electron interactions" continues Amaricci. "This way, it will be easier to identify these materials experimentally, to then better investigate this important field of research".

Very important indeed, according to Capone: "the scientist who discovered these materials, in 2007, was Laurens Molenkamp who, according to rumours circulating in the research community, is a likely candidate for a future Nobel Prize". Molenkamp works at the University of Würzburg, which took part in the current study. Together with colleagues in Würzburg, and in particular Sangiovanni and Trauzettel, it might be possible to involve Molenkamp himself in the future developments of this research project.

####

For more information, please click here

Contacts:
federica sgorbissa

0039-040-378-7644

Copyright © International School of Advanced Studies (SISSA)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project