Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Heat makes electrons’ spin in magnetic superconductors

Abstract:
Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Letters. The international research group behind the breakthrough included Finnish researchers from the University of Jyväskylä and Aalto University.

Heat makes electrons’ spin in magnetic superconductors

Helsinki, Finland | Posted on April 26th, 2015

The ability to control the huge amount of information within the Internet is largely based on the ability to use the magnetic properties of electrons for reading memory devices. The phenomenon is based on the fact that each electron spins in a certain direction. This spin is closely connected with magnetism. Since the 1990s this property has been used for a fast reading of the information in magnetic memories. That is because it was found that the direction of magnetic poles affects the electrical resistivity of magnetic materials.

Lately many research groups have aimed at finding a method for using the electric current also to modify the magnetic information, which would make the data writing process much faster than in today’s magnetic memories. However, the known methods tend to produce too much heat. One of the research directions has been to exploit the heat to convert it to a spin current of the electrons, which would then be used for writing the information.

In the research published yesterday the research group showed how heat is converted to spin current in magnetic superconductors. Many metals turn superconducting a few degrees away from the absolute zero of temperature. As a result, the electrical resistivity of the metal vanishes. Magnetic superconductors can be fabricated by placing a superconducting film on top of a magnetic insulator.

Because superconductivity is present only at low temperatures, this phenomenon cannot be directly used in memory applications.

- Our theory is based on superconductivity, but the vanishing resistance is not very essential in it. Because of that the phenomenon could be generalized to other kinds of materials, and possibly such that it would work also at room temperature, explains Prof. Tero Heikkilä from the University of Jyväskylä.

The now published work was theoretical, but the phenomenon has been already found experimentally.

- Our work explained recent experimental results on the seemingly long lifetime of spin in superconductors. The finding resulted from the conversion of heat into spin, explains Dr Pauli Virtanen from the Aalto University.

####

About Suomen Akatemia (Academy of Finland)
The Academy of Finland’s mission is to fund high-quality scientific research, provide expertise in science and science policy, and strengthen the position of science and research. We are an agency within the administrative branch of the Finnish Ministry of Education, Science and Culture.

We work to contribute to the renewal, diversification and increasing internationalisation of Finnish research. Our activities cover the full spectrum of scientific disciplines.

We support and facilitate researcher training and research careers, internationalisation and the application of research results. We are also keen to emphasise the importance of research impact and breakthrough research. We therefore encourage researchers to submit boundary-crossing applications that involve risks but also offer promise and potential for scientifically significant breakthroughs.

Our funding for research amounts to 310 million euros in 2014. Each year, our funding contributes to some 8,000 people’s work at universities and research institutes in Finland.

For more information, please click here

Contacts:
Leena Vahakyla
+358295335139

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project