Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UAB researchers develop a harmless artificial virus for gene therapy

Abstract:
Researchers of the Nanobiology Unit from the UAB Institute of Biotechnology and Biomedicine, led by Antonio Villaverde, managed to create artificial viruses, protein complexes with the ability of self-assembling and forming nanoparticles which are capable of surrounding DNA fragments, penetrating the cells and reaching the nucleus in a very efficient manner, where they then release the therapeutic DNA fragments. The achievement represents an alternative with no biological risk to the use of viruses in gene therapy.

UAB researchers develop a harmless artificial virus for gene therapy

Barcelona, Spain | Posted on April 8th, 2015

Gene therapy, which is the insertion of genes into the genome with therapeutic aims, needs elements which can transfer these genes to the nucleus of the cells. One of the possibilities when transferring these genes is the use of a virus, although this is not exempt of risks. That is why scientists strive to find an alternative. With this as their objective, emerging nanomedicines aim to imitate viral activities in the form of adjustable nanoparticles which can release nucleic acids and other drugs into the target cell.

Among the great diversity of materials tested by researchers, proteins are biocompatible, biodegradable and offer a large variety of functions which can be adjusted and used in genetic engineering. Nevertheless, it is very complicated to control the way in which protein blocks are organised, in order to form more complex structures which could be used to transport DNA in an efficient manner, as happens with viruses.

Professor Antonio Villaverde's group has discovered the combination necessary to make these proteins act as an artificial virus and self-assemble themselves to form regular protein nanoparticles capable of penetrating target cells and reaching the nucleus in a very efficient manner. In chemical terms, the key lies in a combination of cation-peptide and hexahistidine placed respectively at the amino and C-terminus ends of the modular proteins.

Researchers from the UAB have demonstrated that, when in the presence of DNA, these artificial viruses surround it and carry out structural readjustments so that the DNA is protected against external agents in a similar fashion to how natural viruses protect DNA inside a protein shell. Even the forms adopted by the resulting structures seem to imitate virus forms.

"It is important to highlight that this ability to self-assemble does not depend on the structural protein chosen and does not seem limited to one particular type of protein. This provides the opportunity to select proteins which could avoid any type of immune response after being administered, which is of great advantage in terms of therapeutic uses", Villaverde points out.

"These artificial viruses are promising alternatives to natural protein nanoparticles, including viruses, given that their limitations, such as a rigid architecture and a lack in biosecurity, can be less adequate when used in nanomedicine", states Esther Vázquez, co-author of the study and responsible for the Clinical Nanobiotechnology research line within the Nanobiotechnology Unit of the UAB Institute of Biotechnology and Biomedicine (IBB).

What occurs in chemotherapy as a cancer treatment can also be compared to the problems in gene therapy. Conventional treatments have an extremely high toxicity which limits their applicability. For this reason, UAB researchers, in collaboration with Professor Ramon Mangues from Sant Pau Hospital and Professor Ramon Eritja from CSIC, are now adapting these artificial viruses to be able to transport anti-cancer drugs directly to tumour cells. In this way, they will be capable of releasing large therapeutic doses in a very localised manner.

####

For more information, please click here

Contacts:
Antonio Villaverde

34-935-813-086

Copyright © Universitat Autònoma de Barcelona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Cancer

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

University of Toronto researchers discover new lipid nanoparticle that shows muscle-specific mRNA delivery, reduces off-target effects: Study findings make significant contribution to generating tissue-specific ionizable lipids and prompts rethinking of mRNA vaccine design princi December 8th, 2023

Super-efficient laser light-induced detection of cancer cell-derived nanoparticles: Skipping ultracentrifugation, detection time reduced from hours to minutes! October 6th, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project