Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Wearable sensor clears path to long-term EKG, EMG monitoring

A new electrophysiological sensor developed at North Carolina State University is as accurate as the 'wet electrode' sensors used in hospitals for EKGs and EMGs, but can be used for long-term monitoring and is more accurate than existing sensors when a patient is moving.
CREDIT: Yong Zhu
A new electrophysiological sensor developed at North Carolina State University is as accurate as the 'wet electrode' sensors used in hospitals for EKGs and EMGs, but can be used for long-term monitoring and is more accurate than existing sensors when a patient is moving.

CREDIT: Yong Zhu

Abstract:
Researchers from North Carolina State University have developed a new, wearable sensor that uses silver nanowires to monitor electrophysiological signals, such as electrocardiography (EKG) or electromyography (EMG). The new sensor is as accurate as the "wet electrode" sensors used in hospitals, but can be used for long-term monitoring and is more accurate than existing sensors when a patient is moving.

Wearable sensor clears path to long-term EKG, EMG monitoring

Raleigh, NC | Posted on January 20th, 2015

Long-term monitoring of electrophysiological signals can be used to track patient health or assist in medical research, and may also be used in the development of new powered prosthetics that respond to a patient's muscular signals.

Electrophysiological sensors used in hospitals, such as EKGs, use wet electrodes that rely on an electrolytic gel between the sensor and the patient's skin to improve the sensor's ability to pick up the body's electrical signals. However, this technology poses problems for long-term monitoring, because the gel dries up - irritating the patient's skin and making the sensor less accurate.

The new nanowire sensor is comparable to the wet sensors in terms of signal quality, but is a "dry" electrode - it doesn't use a gel layer, so doesn't pose the same problems that wet sensors do.

"People have developed other dry electrodes in the past few years, and some have demonstrated the potential to rival the wet electrodes, but our new electrode has better signal quality than most - if not all - of the existing dry electrodes. It is more accurate," says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and senior author of a paper describing the work. "In addition, our electrode is mechanically robust, because the nanowires are inlaid in the polymer."

The sensors stem from Zhu's earlier work to create highly conductive and elastic conductors made from silver nanowires, and consist of one layer of nanowires in a stretchable polymer.

The new sensor is also more accurate than existing technologies at monitoring electrophysiological signals when a patient is in motion.

"The silver nanowire sensors conform to a patient's skin, creating close contact," Zhu says. "And, because the nanowires are so flexible, the sensor maintains that close contact even when the patient moves. The nanowires are also highly conductive, which is key to the high signal quality."

The new sensors are also compatible with standard EKG- and EMG-reading devices.

"I think these sensors are essentially ready for use," Zhu says "The raw materials of the sensor are comparable in cost to existing wet sensors, but we are still exploring ways of improving the manufacturing process to reduce the overall cost."

###

An uncorrected proof of the paper, "Wearable Silver Nanowire Dry Electrodes for Electrophysiological Sensing," was published online Jan. 14 in RSC Advances, immediately after acceptance. Lead author of the paper is Amanda Myers, a Ph.D. student at NC State. The paper was co-authored by Dr. Helen Huang, an associate professor in the joint biomedical engineering program at NC State and the University of North Carolina at Chapel Hill.

The work was supported by the National Science Foundation through the ASSIST Engineering Research Center at NC State, under grant number EEC-1160483.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project