Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption

Abstract:
Who knew Blu-ray discs were so useful? Already one of the best ways to store high-definition movies and television shows because of their high-density data storage, Blu-ray discs also improve the performance of solar cells -- suggesting a second use for unwanted discs -- according to new research from Northwestern University.

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption

Evanston, IL | Posted on November 25th, 2014

An interdisciplinary research team has discovered that the pattern of information written on a Blu-ray disc -- and it doesn't matter if it's Jackie Chan's "Supercop" or the cartoon "Family Guy" -- works very well for improving light absorption across the solar spectrum. And better yet, the researchers know why.

"We had a hunch that Blu-ray discs might work for improving solar cells, and, to our delight, we found the existing patterns are already very good," said Jiaxing Huang, a materials chemist and an associate professor of materials science and engineering in the McCormick School of Engineering and Applied Science. "It's as if electrical engineers and computer scientists developing the Blu-ray technology have been subconsciously doing our jobs, too."

Blu-ray discs contain a higher density of data than DVDs or CDs, and it is this quasi-random pattern, perfected by engineers over decades for data storage, that, when transferred to the surface of solar cells, provides the right texture to improve the cells' light absorption and performance.

Working with Cheng Sun, an associate professor of mechanical engineering at McCormick, Huang and his team tested a wide range of movies and television shows stored on Blu-ray discs, including action movies, dramas, documentaries, cartoons and black-and-white content, and found the video content did not matter. All worked equally well for enhancing light absorption in solar cells.

The findings will be published Nov. 25 in the journal Nature Communications.

In the field of solar cells, it is known that if texture is placed on the surface of a solar cell, light is scattered more effectively, increasing a cell's efficiency. Scientists have long been searching for the most effective texture with a reasonable manufacturing cost.

The Northwestern researchers have demonstrated that a Blu-ray disc's strings of binary code 0s and 1s, embedded as islands and pits to store video information, give solar cells the near-optimal surface texture to improve their absorption over the broad spectrum of sunlight.

In their study, the researchers first selected the Jackie Chan movie "Supercop." They replicated the pattern on the active layer of a polymer solar cell and found the cell was more efficient than a control solar cell with a random pattern on its surface.

"We found a random pattern or texture does work better than no pattern, but a Blu-ray disc pattern is best of all," Huang said. "Then I wondered, why did it work? If you don't understand why, it's not good science."

Huang puzzled over the question of why for some time. One day, his wife, Shaorong Liu, a database engineer at IBM, suggested it likely had something to do with data compression. That was the insight Huang needed.

Huang and Sun then turned to McCormick colleague Dongning Guo, an expert in information theory, to investigate this idea. Guo is an associate professor of electrical engineering and computer science.

The researchers looked closely at the data processing algorithms in the Blu-ray standard and noted the algorithms serve two major purposes:

Achieving as high a degree of compression as possible by converting the video signals into a seemingly random sequence of 0s and 1s; and

Increasing error tolerance by adding controlled redundancy into the data sequence, which also limits the number of consecutive 0s and 1s.

These two purposes, the researchers said, have resulted in a quasi-random array of islands and pits (0s and 1s) with feature sizes between 150 and 525 nanometers. And this range, it turns out, works quite well for light-trapping applications over the entire solar spectrum.

The overall broadband absorption enhancement of a Blu-ray patterned solar cell was measured to be 21.8 percent, the researchers report.

"In addition to improving polymer solar cells, our simulation suggests the Blu-ray patterns could be broadly applied for light trapping in other kinds of solar cells," Sun said.

"It has been quite unexpected and truly thrilling to see new science coming out of the intersection of information theory, nanophotonics and materials science," Huang said.

###

The paper is titled "Repurposing Blu-ray Movie Discs as Quasi-random Nanoimprinting Templates for Photon Management."

In addition to Huang, Guo and Sun, other authors of the paper are Alexander J. Smith (co-first author) and Chen Wang (co-first author), both of Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project