Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Characterization of X-ray flashes open new perspectives in X-ray science: Ultra-short X-ray pulses explore the nano world

Undulator hall at the Linac Coherent Light Source of SLAC – Photo: SLAC National Accelerator Center
Undulator hall at the Linac Coherent Light Source of SLAC – Photo: SLAC National Accelerator Center

Abstract:
Ultra-short and extremely strong X-ray flashes, as produced by free-electron lasers, are opening the door to a hitherto unknown world. Scientists are using these flashes to take "snapshots" of the geometry of tiniest structures, for example the arrangement of atoms in molecules. To improve not only spatial but also temporal resolution further requires knowledge about the precise duration and intensity of the X-ray flashes. An international team of scientists has now tackled this challenge.

Characterization of X-ray flashes open new perspectives in X-ray science: Ultra-short X-ray pulses explore the nano world

Muenchen, Germany | Posted on November 24th, 2014

X-ray flashes are a unique scientific tool. They are generated by accelerating electrons to very high energy levels in kilometer-long vacuum tubes, so-called linear accelerators, and then deflecting them with specially arranged magnets. In the process the particles emit X-ray radiation that is amplified until an ultra-short and intensive X-ray flash is released.

Researchers use these X-ray flashes to resolve structures as small as one ten billionth of a meter (0.1 nanometer) in size. That is roughly the diameter of a hydrogen atom. In this way, biomolecules, for example, can be imaged at extremely high resolution, providing new insight into the nano cosmos of nature.

Using two quickly sequenced flashes the researchers can even obtain information on structural changes during reactions. The first laser flash triggers a reaction while the second measures structural changes during the reaction. For this it is essential to know the precise duration and temporal intensity distribution of the X-ray flashes. However, hitherto it has not been possible to measure the ultra-short pulses directly.

Researchers at the Technische Universität München (TUM), the Hamburg Center for Free-Electron Laser Science (CFEL) and the Max Planck Institute of Quantum Optics (MPQ) in Garching, in collaboration with other colleagues, have now developed just such a methodology. The respective experiments were done at the SLAC National Accelerator Laboratory in California (USA) by a team headed by Professor Reinhard Kienberger, Dr. Wolfram Helml (TUM) and Dr. Andreas Maier (CFEL).

The scientists determined the duration of the X-ray flashes by modifying a process originally developed to measure ultra-short flashes of light. The physicists directed the X-ray flashes into a vacuum chamber filled with a few atoms of an inert gas. There they superimposed the flashes with 2.4 micrometer wavelength pulses of infrared light.

When the X-ray flashes hit a gas atom they knock electrons out of the innermost shell, setting them free. After being liberated the electrons are accelerated or decelerated by the electrical field of the infrared light pulse. The change in an electron's velocity is a function of when the light intercepts the electron, and thus of the electrical field strength at the moment of ionization.

Since electrons are set free during the full duration of an X-ray flash, electrons emitted at different points in time "feel" different field strengths of the periodically oscillating infrared light. As a result they are accelerated at varying rates. The physicists can then calculate the duration of the original X-ray flash from the different arrival times of the electrons in a detector.

Using this approach, the researchers determined that the average pulse duration doesn't exceed four and a half femtoseconds - a femtosecond is a millionth of a billionth of a second (10-15 seconds). In addition, the researchers obtained insight into the structure of the X-ray flashes.

A characteristic of the intense X-ray flashes generated in free-electron lasers is their randomly changing pulse form. A typical X-ray pulse comprises multiple contiguous shorter "X-ray spikes." The number and intensity of these spikes varies from one shot to the next.

For the first time ever, the researchers managed to measure these ultra-short sub-peaks directly and confirm predictions that the individual flashes last only around 800 attoseconds - an attosecond is a billionth of a billionth of a second (10-18 seconds). The new methodology allows the detailed, direct temporal measurement of X-ray pulses and augments methodologies for determining pulse shape and length indirectly from the structure of the electron packets used to generate the flashes.

The enhanced X-ray pulse measurement technology may also find application at the new Center for Advanced Laser Applications (CALA) at the Garching campus. Researchers there are working on, among other things, generating even shorter X-ray pulses using high-energy lasers. Pulses with a duration of only a few attoseconds, would allow researchers to take "snapshots" of even faster processes in nature, like the movement of electrons around atomic nuclei.

However, X-ray flashes provide not only basic research with new perspectives. Medicine could also profit from the technology. "Ultra-short laser-like X-ray pluses serve not only the investigation of the fastest physical processes at the core of matter, but could, because of their extremely high intensity, also be used to destroy tumors following X-ray diagnosis," explains Reinhard Kienberger, professor for laser and X-ray physics at TU München and leader of the research consortium.

The research was funded by the German Research Foundation (Excellence Cluster Munich - Center for Advanced Photonics, MAP), the Bavaria California Technology Center (BaCaTec), the International Max Planck Research School on Advanced Photon Science (IMPRS), a Marie Curie International Outgoing Fellowship, the US Department of Energy, the National Science Foundation (USA), the Science Foundation Ireland (SFI) and the European Research Council (ERC Starting Grant). CFEL is a collaboration facility of the Deutsches Elektronen Synchrotron (DESY), the University of Hamburg and the Max Planck Society. CALA is a joint research facility of Technische Universität München and Ludwig-Maximilians-Universität München.

Publication:

W. Helml, A. R. Maier, W. Schweinberger, I. Grguraš, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri & R. Kienberger
Measuring the temporal structure of few-femtosecond FEL X-ray pulses directly in the time domain
Nature Photonics online, 24. November 2014, Doi: 10.1038/NPHOTON.2014.278

####

For more information, please click here

Contacts:
Andreas Battenberg

49-892-891-0510

Prof. Dr. Reinhard Kienberger
Technische Universität München
Chair for Laser and X-Ray Physics, E11
James Frank Str., 85748 Garching, Germany
Tel.: +49 89 289 12840 – E-mail:
Internet: www.e11.ph.tum.de

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project