Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission

Hybrid optoplasmonic system showing the operation of amplification.
Hybrid optoplasmonic system showing the operation of amplification.

Abstract:
By combining plasmonics and optical microresonators, researchers at the University of Illinois at Urbana-Champaign have created a new optical amplifier (or laser) design, paving the way for power-on-a-chip applications.

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission

Urbana, IL | Posted on August 26th, 2014

"We have made optical systems at the microscopic scale that amplify light and produce ultra-narrowband spectral output," explained J. Gary Eden, a professor of electrical and computer engineering (ECE) at Illinois. "These new optical amplifiers are well-suited for routing optical power on a chip containing both electronic and optical components.

"Their potential applications in medicine are exciting because the amplifiers are actuated (‘pumped') by light that is able to pass through human skin. For this reason, these microsphere-based amplifiers are able to transmit signals from cells and buried biomedical sensors to electrical and optical networks outside the body."

The speed of currently available semiconductor electronics is limited to about 10 GHz due to heat generation and interconnects delay time issues. Though, not limited by speed, dielectric-based photonics are limited in size by the fundamental laws of diffraction. The researchers, led by Eden and ECE associate professor Logan Liu, found that plasmonics—metal nanostructures—can serve as a bridge between photonics and nanoelectronics, to combine the size of nanoelectronics and the speed of dielectric photonics.

"We have demonstrated a novel optoplasmonic system comprising plasmonic nanoantennas and optical microcavities capable of active nanoscale field modulation, frequency switching, and amplification of signals," states Manas Ranjan Gartia, lead author of the article, "Injection- Seeded Optoplasmonic Amplifier in the Visible," published in the journal Scientific Reports. "This is an important step forward for monolithically building on-chip light sources inside future chips that can use much less energy while providing superior speed performance of the chips."

At the heart of the amplifier is a microsphere (made of polystyrene or glass) that is approximately 10 microns in diameter. When activated by an intense beam of light, the sphere generates internally a narrowband optical signal that is produced by a process known as Raman scattering. Molecules tethered to the surface of the sphere by a protein amplify the Raman signal, and in concert with a nano-structured surface in contact to the sphere, the amplifier produces visible (red or green) light having a bandwidth that matches the internally-generated signal.

The proposed design is well-suited for routing narrowband optical power on-a-chip. Over the past five decades, optical oscillators and amplifiers have typically been based on the buildup of the field from the spontaneous emission background. Doing so limits the temporal coherence of the output, lengthens the time required for the optical field to grow from the noise, and often is responsible for complex, multiline spectra.

"In our design, we use Raman assisted injection-seeded locking to overcome the above problems. In addition to the spectral control afforded by injection-locking, the effective Q of the amplifier can be specified by the bandwidth of the injected Raman signal," Gartia said. This characteristic contrasts with previous WGM-based lasers and amplifiers for which the Q is determined solely by the WGM resonator.

In addition to Eden, Liu, and Gartia, co-authors of the paper include Sujin Seo, Junhwan Kim, Te-Wei Chang, Assistant Professor Gaurav Bahl from Department of Mechanical Science and Engineering, and Prof. Meng Lu, ECE alumnus and currently assistant professor at Iowa State University. The research was done at Micro and Nanotechnology Laboratory at Illinois.
- See more at: http://engineering.illinois.edu/news/article/9356#sthash.fAXqBh3A.dpuf

####

For more information, please click here

Contacts:
Gary Eden

217-333-4157

Gang Logan Liu
Department of Electrical and Computer Engineering
217/244-4349

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project