Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum manipulation: Filling the gap between quantum and classical world

This graphic shows the relationships between fundamental quantum mechanics and the technology of the classical world.

Credit: ©Science China Press
This graphic shows the relationships between fundamental quantum mechanics and the technology of the classical world.

Credit: ©Science China Press

Abstract:
Quantum superposition is a fundamental and also intriguing property of the quantum world. Because of superposition, a quantum system can be in two different states simultaneously, like a cat that can be both "dead" and "alive" at the same time. However, this anti-intuitive phenomenon cannot be observed directly, because whenever a classical measuring tool touches a quantum system, it immediately collapse into a classical state. On the other hand, quantum superposition is also the core of quantum computer's enormous computational power. A quantum computer can easily break the widely used RSA (Rivest, Shamir and Adleman) security system with Shor's algorithm. But for now, quantum computation still suffers from the decoherence induced by environment. Obviously, the key to manipulate a quantum system is to make it stay coherent as long as possible, to achieve this, one need to isolate the system from its environment. "For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems", Serge Haroche and David Wineland won the 2012 Nobel Prize in Physics.

Quantum manipulation: Filling the gap between quantum and classical world

Beijing, China | Posted on April 14th, 2014

This review begins by introducing the interesting property of quantum superposition, explaining its physical meaning, potential applications and main obstacles ahead. Then the author goes on to introduce the work of the two 2012 Nobel Prize Laureates - Serge Haroche and David Wineland. Instead of manipulating a neutral atom or a photon, Wineland and his team focused on controlling a charged atom, the ion, in an electromagnetic well. In order to break the limit of Doppler cooling, a new cooling technique - Side-Band cooling was used to reach extreme low temperature. The well cooled ions made an ideal platform for building optical clock and quantum computer. Since 2001, Wineland and his team had realized several optical clocks with very high precision. They had also realized basic quantum logic gate in ion trap and demonstrated the scalability of ion system, proving their system is promising for practical quantum computation. This article covers the above topics and gives detailed review.

In the fourth section, the author introduces the work of Haroche and his collaborators. Haroche et al managed to build a high-Q microwave cavity with superconducting materials and cooled it down to superconducting phase. According to Meissner effect, photons in the cavity cannot penetrate the superconducting mirror and will be trapped inside, thus isolate the photons from its environment. Since the cavity has extremely high-Q, the Rydberg atoms inside the cavity are strongly correlated to the photon field, which makes a perfect platform for testing the fundamental principles of quantum mechanics. With the aid of quantum non-demolition measurement, quantum processes can be observed without destroying the state. Using this platform, Haroche et al had directly observed decoherence, quantum jump and several other quantum information processes.

Finally, the review introduces recent developments and further applications of quantum manipulation, and then ends with a discussion of the relationship between quantum and classical world. With advanced quantum manipulation techniques, people are able to investigate fundamental quantum mechanics. In return, a better understanding of quantum mechanics makes it possible to develop new technologies that will change our classical world.

####

For more information, please click here

Contacts:
Guang-Can Guo

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Quantum Computing

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Quantum nanoscience

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project