Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Controlling heat flow with atomic-level precision

Through atomic-scale manipulation, researchers have demonstrated that a single layer of atoms can disrupt or enhance heat flow across an interface.
Through atomic-scale manipulation, researchers have demonstrated that a single layer of atoms can disrupt or enhance heat flow across an interface.

Abstract:
Through a combination of atomic-scale materials design and ultrafast measurements, researchers at the University of Illinois have revealed new insights about how heat flows across an interface between two materials.

Controlling heat flow with atomic-level precision

Urbana, IL | Posted on April 23rd, 2012

The researchers demonstrated that a single layer of atoms can disrupt or enhance heat flow across an interface. Their results are published this week in Nature Materials.

Improved control of heat exchange is a key element to enhancing the performance of current technologies such as integrated circuits and combustion engines as well as emerging technologies such as thermoelectric devices, which harvest renewable energy from waste heat. However, achieving control is hampered by an incomplete understanding of how heat is conducted through and between materials.

"Heat travels through electrically insulating material via ‘phonons,' which are collective vibrations of atoms that travel like waves through a material," said David Cahill a Willett Professor and the head of the Department of Materials Science and Engineering, and co-author of the paper. "Compared to our knowledge of how electricity and light travel through materials, scientists' knowledge of heat flow is rather rudimentary."

One reason such knowledge remains elusive is the difficulty of accurately measuring temperatures, especially at small-length scales and over short time periods - the parameters that many micro and nano devices operate under.

Over the past decade, Cahill's group has refined a measurement technique using very short laser pulses, lasting only one trillionth of a second, to probe heat flow accurately with nanometer-depth resolution. Cahill teamed up with Paul Braun, the Racheff Professor of Materials Science and Engineering at Illinois and a leader in nanoscale materials synthesis, to apply the technique to understanding how atomic-scale features affect heat transport.

"These experiments used a ‘molecular sandwich' that allowed us to manipulate and study the effect that chemistry at the interface has on heat flow, at an atomic scale," Braun said.

The researchers assembled their molecular sandwich by first depositing a single layer of molecules on a quartz surface. Next, through a technique known as transfer-printing, they placed a very thin gold film on top of these molecules. Then they applied a heat pulse to the gold layer and measured how it traveled through the sandwich to the quartz at the bottom.

By adjusting just the composition of the molecules in contact with the gold layer, the group observed a change in heat transfer depending on how strongly the molecule bonded to the gold. They demonstrated that stronger bonding produced a twofold increase in heat flow.

"This variation in heat flow could be much greater in other systems," said Mark Losego, who led this research effort as a postdoctoral scholar at Illinois and is now a research professor at North Carolina State University. "If the vibrational modes for the two solids were more similar, we could expect changes of up to a factor of 10 or more."

The researchers also used their ability to systematically adjust the interfacial chemistry to dial-in a heat flow value between the two extremes, verifying the ability to use this knowledge to design materials systems with desired thermal transport properties.

"We've basically shown that changing even a single layer of atoms at the interface between two materials significantly impacts heat flow across that interface," said Losego.

Scientifically, this work opens up new avenues of research. The Illinois group is already working toward a deeper fundamental understanding of heat transfer by refining measurement methods for quantifying interfacial bonding stiffness, as well as investigating temperature dependence, which will reveal a better fundamental picture of how the changes in interface chemistry are disrupting or enhancing the flow of heat across the interface.

"For many years, the physical models for heat flow between two materials have ignored the atomic-level features of an interface," Cahill said. "Now these theories need to be refined. The experimental methods developed here will help quantify the extent to which interfacial structural features contribute to heat flow and will be used to validate these new theories."

Braun and Cahill are affiliated with the Frederick Seitz Materials Research Laboratory at Illinois Braun is also affiliated with the Department of Chemistry and the Beckman Institute for Advanced Science and Technology. The Air Force Office of Scientific Research supported this work.

####

For more information, please click here

Contacts:
Paul Braun
Department of Materials Science and Engineering
217-244-7293


David Cahill
Department of Materials Science and Engineering
217/333-6753


Writer:
Liz Ahlberg
physical sciences editor
U of I News Bureau
217/244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Chemistry

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Thin films

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Even geckos can lose their grip July 9th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

Discoveries

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Measuring the Smallest Magnets July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Materials/Metamaterials

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Military

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE