Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Tumor study reveals size limitations for new drugs: Normalizing tumor blood vessels improves delivery of only the smallest nanomedicines

Top panels: control setups. Bottom panels: Mammary tumor tissue after normalization of blood vessels. Left: Few of the large nanoparticles are visible. Right: The smaller nanoparticles have penetrated well. Courtesy of Vikash Chauhan / Nature Nanotech.
Top panels: control setups. Bottom panels: Mammary tumor tissue after normalization of blood vessels. Left: Few of the large nanoparticles are visible. Right: The smaller nanoparticles have penetrated well.

Courtesy of Vikash Chauhan / Nature Nanotech.

Abstract:
Combining two strategies that are designed to improve the results of cancer treatment—angiogenesis inhibitors and nanomedicines—may only be successful if the smallest nanomedicines are used.

Tumor study reveals size limitations for new drugs: Normalizing tumor blood vessels improves delivery of only the smallest nanomedicines

Cambridge, MA | Posted on April 10th, 2012

A new study led by researchers at the Harvard School of Engineering and Applied Sciences (SEAS) and Massachusetts General Hospital (MGH) has found that normalizing blood vessels within tumors, which improves the delivery of standard chemotherapy drugs, can actually block the delivery of larger nanotherapy molecules.

"We found that vascular normalization only increases the delivery of the smallest nanomedicines to cancer cells," says lead author Vikash P. Chauhan, a graduate student in bioengineering at SEAS. "We also showed that the smallest nanomedicines are inherently better than larger nanomedicines at penetrating tumors, suggesting that smaller nanomedicines may be ideal for cancer therapy."

The results have been published in Nature Nanotechnology.

Angiogenesis, the tumor-driven creation of new blood vessels, provides growing cancers with a food source—but it also provides a potential channel for drug delivery.

The problem is that the vessels supplying tumors tend to be disorganized, oversized, and leaky. These abnormalities prevent the delivery of chemotherapy drugs to cells that are not close to the tumor vessels. The leakage of plasma out of blood vessels also increases pressure within the tumor, further reducing the drugs' ability to penetrate the tissue. Fortunately, drugs that inhibit angiogenesis can reduce some of these problems in a process called vascular normalization.

"Anti-angiogenic agents are prescribed to a large number of cancer patients in combination with conventional therapeutics," explains principal investigator Rakesh K. Jain, Cook Professor of Radiation Oncology (Tumor Biology) at Harvard Medical School and director of the Steele Laboratory of Tumor Biology at MGH. Jain is also Chauhan's Ph.D. adviser.

The combination of standard chemotherapy drugs and normalization therapy has previously been shown to improve the effectiveness of treatment on some types of cancer.

New nanomedicines, on the other hand, are designed to exploit the abnormality of tumor vessels. Nanomedicines, despite the name, are actually about 10 to 100 times larger than standard chemotherapy drugs—too large to penetrate the pores of blood vessels in normal tissues, but still small enough to pass through the oversized pores of tumor vessels. Because nanomedicines generally cannot penetrate normal tissues, they are expected to cause fewer side effects.

The question in the Harvard-MGH study was whether vascular normalization would help or hinder the delivery of nanomedicines to tumors. The researchers found, through both theory and in vivo experimentation, that it depends on the size of the nanomedicines.

Their mathematical model predicted that inhibiting angiogenesis would simultaneously reduce the size of the pores in the blood vessels and relieve pressure in the tumor, allowing small particles to penetrate.

Confirming this experimentally in a mouse model of breast cancer, the investigators showed that vascular normalization (using an antibody called DC101) improved the penetration of 12-nanometer particles but not of 60- or 125-nanometer particles.

They treated mice with implanted breast tumors either with DC101 and Doxil, a 100-nanometer version of the chemotherapy drug doxorubicin, or with DC101 and Abraxane, a 10-nanometer version of paclitaxel. Although treatment with both chemotherapeutics delayed tumor growth, vascular normalization with DC101 improved the effectiveness only of Abraxane and had no effect on Doxil treatment.

"A variety of anticancer nanomedicines are currently in use or in clinical trials," says Chauhan, who completed the work at MGH. "Our findings suggest that combining smaller nanomedicines with anti-angiogenic therapies may have a synergistic effect and that smaller nanomedicines should inherently penetrate tumors faster than larger nanomedicines, due to the physical principles that govern drug penetration. While it looks like future development of nanomedicines should focus on making them small—around 12 nanometers in size—we also need to investigate ways to improve delivery of the larger nanomedicines that are currently in use."

Additional co-authors of the Nature Nanotechnology report are Triantafyllos Stylianopoulos, John Martin, Walid Kamoun, and Dai Fukumura of MGH; and Zoran Popovic, Ou Chen, and Moungi Bawendi of Massachusetts Institute of Technology (MIT).

The work benefited from a long-term collaboration between Harvard, MGH, and MIT that explores the use of quantum dots as a biocompatible fluorescent marker in medical studies.

Support for the study included grants from the National Institutes of Health and the Department of Defense.

####

For more information, please click here

Contacts:
Caroline Perry
(617) 496-1351

Copyright © Harvard's School of Engineering and Applied Sciences (SEAS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Imaging

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Govt.-Legislation/Regulation/Funding/Policy

A cool way to form 2-D conducting polymers using ice: POSTECH scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Nanomedicine

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Discoveries

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Military

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Quantum Dots/Rods

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Producing spin-entangled electrons July 2nd, 2015

Philips Introduces Quantum Dot TV with Color IQ™ Technology from QD Vision: Manufacturer is first to offer quantum dot displays for both TVs and monitors June 30th, 2015

Biomanufacturing of CdS quantum dots: A bacterial method for the low-cost, environmentally-friendly synthesis of aqueous soluble quantum dot nanocrystals June 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project