Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Microchips for the mobile information age

 Shutterstock
Shutterstock

Abstract:
The latest microchip technology developed by EU-funded scientists could enhance future generations of processors, in particular those used in mobile devices like tablets and smart phones which are leading the way to the mobile information age.

Microchips for the mobile information age

Brussels, Belgium | Posted on April 5th, 2012

Last year, sales of smart phones exceeded laptops for the first time, indicating that we are well into a new phase of the information age. Call it the mobile information age!

During the initial phase of the internet age, desktop personal computers and later laptop computers were connected together as well as to information sources via telephone land lines in buildings. In this early information age, some people were connected to the internet quite often, many only occasionally and most almost never.

This has changed rapidly with the development of wireless communications, ultimately leading to smart phones that are always connected. All this is possible thanks to powerful electronics that are lighter and more compact, yet perform faster and better.

But emerging devices and services will require a new generation of smaller, low-energy microchips that offer higher data rates, and the European Union is investing heavily in state-of-the-art technology to ensure the continent maintains its leading role in the information society. And the 'Dual-channel CMOS for sub-22 nm high performance logic' (Duallogic) project is an example of this pan-European effort.

'We sought to give a performance boost to future devices operating at lower power supply voltages, so you would get more performance for less energy. This is required for the kind of multimedia applications that run on small handheld devices powered by limited batteries,' says Athanasios Dimoulas, coordinator of the Duallogic project, which received EUR 5.8 million of its EUR 9.3 million budget from the European Union.

Performance and low-power operation were the two goals of the project - a highly ambitious Seventh Framework Programme STREP project. After 40 years of continuous miniaturisation, further boosting microchip performance has become an increasingly difficult challenge.

So the scientists, engineers and designers at Duallogic had to get creative. They kept silicon as the substrate but looked beyond silicon to less common semiconductor materials to create the conduction channel inside the millions of transistors making up a microchip.

By exploiting the unique properties of a variety of semiconductor materials, the Duallogic team hoped to push the performance of microchip circuits beyond the limits intrinsic to silicon, paving the way for more efficient circuits and smaller scales.

'It is widely known that an integrated circuit - the "brain" of all electronic systems - is made of silicon. While this material is abundant in nature and easy to work with, it does not allow electrons to run through it as fast as we would like, particularly in low voltage applications,' notes Dr Dimoulas.

'In the Duallogic project, we wanted to replace [the] silicon channels of transistors with higher-mobility semiconductor materials like germanium and compound semiconductors to make the charge carriers - electrons and holes - move faster through the transistor.'

It was very challenging because the team worked on large-scale silicon wafers using industrial-scale techniques. This is why Duallogic included so many of the continent's leading institutes and industrial players, such as Belgium's imec and Katholieke Universiteit Leuven, AIXTRON in Germany, CEA-LETI and STMicroelectronics in France, NCSR DEMOKRITOS in Greece, Glasgow University in the UK, and IBM-Zurich in Switzerland.

Twice the logic

The project was called Duallogic because it used different channel materials for each of the two transistors found on microchips, the positive p-type and the negative n-type. The team chose Germanium (Ge) and SiliconGermanium (SiGe) for the p-type transistors and IndiumGalliumArsenide (InGaAs), a compound semiconductor, as a promising candidate for the n-type transistor. The materials were chosen because they offer high mobility for the charge carriers in each type of transistor.

The InGaAs compound is known as a III-V semiconductor, so-called because it is composed of elements from the third and the fifth columns of the periodic table. These compounds offer much higher mobility, a measure of how easily charge carriers can move about inside the semiconductor lattice. Greater mobility ultimately leads to higher performance. Likewise, Germanium offers higher mobility for p-type transistors.

'This approach is considered to be high on the priority list for many RTD and technology integrator labs around the world,' notes Dr Dimoulas. It has proved a very successful research path for the Duallogic consortium, too. 'We successfully integrated SiliconGermanium p-type transistors and achieved state-of-the-art results, even beyond expectations,' confirms Dr Dimoulas.

Results for the n-type transistor were more mixed, but still very positive. The team successfully created an InGaAs transistor and also found a way to arrange them on a silicon substrate so as to keep the fabrication cost low. This was a major result, because there are significant integration and architecture issues when building a III-V-based transistor on a silicon substrate.

Integration for the p-type transistor was much easier, according to the project coordinator: 'Because Germanium and Silicon are both in group IV of the periodic table, their structure is similar and they are chemically compatible so Germanium can be processed in much the same way as Silicon.'

But InGaAs is less compatible with Silicon and has a greater lattice mismatch which leads to fabrication problems. Co-integration of both types of transistors is even more challenging, he adds, but the team developed a new fabrication tool to cope with the issue of growing III-V layers onto a large silicon substrate. Dr Dimoulas suggests further research is needed on the n-type transistor developed in the project.

In addition, Duallogic achieved significant results for a specific kind of transistor architecture called implant-free quantum well transistors, which could lead to microchips that offer even better performance than conventional 'Metal oxide semiconductor' (MOS) transistors.

Industry players

'We were very fortunate to have imec and CEA-LETI in our consortium because, through them, we were able to get access to many industrial players in the semiconductor industry,' notes Dr Dimoulas.

The consortium also hopes to continue the research, ideally in a larger project with more partners, because the results, while state of the art, are not yet at the level where they can be picked up by industry.

'We also want to develop simple circuits, like ring oscillators or inverters, so we are currently looking at appropriate RTD instruments to continue the work,' Dr Dimoulas reveals.

Duallogic's work also has impacts on the advancement of technology options proposed for evaluation by the International Technology Roadmap for Semiconductors (ITRS), which defines the future strategic research axis to achieve further miniaturisation.

'With the help of academics and process developers, the project explored advanced and risky technology options,' notes Dr Dimoulas. This helps industry to identify potentially better solutions for their products, he suggests, saving time and money and allowing them to focus on their shorter-term manufacturing and product development needs.

'The collaboration of "Integrated device manufacturers" (IDM) with equipment vendors in the same project is an excellent opportunity for the nanoelectronics industry to make early decisions about the equipment investments required for future volume manufacturing,' he concludes.

The Duallogic project received research funding under the EU's Seventh Framework Programme, sub-programme 'Next-generation nanoelectronics components and electronics integration'.

####

For more information, please click here

Copyright © Cordis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

'Dual-channel CMOS for sub-22 nm high performance logic' project

Duallogic project data record on CORDIS

Nanoelectronics Research on CORDIS

Related News Press

News and information

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Chip Technology

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Global Nano Barium Sulfate Industry 2015 Market Research Report July 23rd, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Announcements

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Industrial

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

More efficient process to produce graphene developed by Ben-Gurion University researchers July 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project