Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Nanotechnology Columns > Brian Wang > Self-assembly of Carbon Nanotubes into Two-Dimensional Structures and Devices and on the Verge of Carbon Nanotube Powerlines

Brian Wang
Z1 Consulting

Abstract:
Assembling carbon nanotubes into two dimensional structures and devices using DNA origami in a process that is scalable to billions of devices assembled in parallel. Carbon nanotubes are also being formed into fibers hundreds of meters long and if the carbon nanotubes were able to be selected to be all metallic then carbon nanotubes could be used for nearly lossless power lines.

November 18th, 2009

Self-assembly of Carbon Nanotubes into Two-Dimensional Structures and Devices and on the Verge of Carbon Nanotube Powerlines

Nature Nanotechnology: Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates

A central challenge in nanotechnology is the parallel fabrication of complex geometries for nanodevices. Here we report a general method for arranging single-walled carbon nanotubes in two dimensions using DNA origami—a technique in which a long single strand of DNA is folded into a predetermined shape. We synthesize rectangular origami templates (75 nm 95 nm) that display two lines of single-stranded DNA 'hooks' in a cross pattern with 6 nm resolution. The perpendicular lines of hooks serve as sequence-specific binding sites for two types of nanotubes, each functionalized non-covalently with a distinct DNA linker molecule. The hook-binding domain of each linker is protected to ensure efficient hybridization. When origami templates and DNA-functionalized nanotubes are mixed, strand displacement-mediated deprotection and binding aligns the nanotubes into cross-junctions. Of several cross-junctions synthesized by this method, one demonstrated stable field-effect transistor-like behaviour. In such organizations of electronic components, DNA origami serves as a programmable nanobreadboard; thus, DNA origami may allow the rapid prototyping of complex nanotube-based structures.


This work someday may lead to the development of novel types of nanoscale electronic devices

An interdisciplinary team of researchers at the California Institute of Technology (Caltech) has combined DNA's talent for self-assembly with the remarkable electronic properties of carbon nanotubes, thereby suggesting a solution to the long-standing problem of organizing carbon nanotubes into nanoscale electronic circuits.

"We expect that our approach can be improved and extended to reliably construct more complex circuits involving carbon nanotubes and perhaps other elements including electrodes and wiring," Goddard says, "which we anticipate will provide new ways to probe the behavior and properties of these remarkable molecules."

The real benefit of the approach, he points out, is that self-assembly doesn't just make one device at a time. "This is a scalable technology. That is, one can design the origami to construct complex logic units, and to do this for thousands or millions or billions of units that self-assemble in parallel."


2. MIT Technology Review reports on a new method for assembling carbon nanotubes has been used to create fibers hundreds of meters long. Individual carbon nanotubes are strong, lightweight, and electrically conductive, and could be valuable as, among other things, electrical transmission wires. But aligning masses of the nanotubes into well-ordered materials such as fibers has proven challenging at a scale suitable for manufacturing. By processing carbon nanotubes in a solution called a superacid, researchers at Rice University have made long fibers that might be used as lightweight, efficient wires for the electrical grid or as the basis of structural materials and conductive textiles.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE